看板 NTUEE107HW 關於我們 聯絡資訊
※ 引述《sainteyes (立其)》之銘言: : Qm(x)={(x^2-1)^m}^(m)->指微分m次 (m=0,1,2,3.....) : ^^^ : Prove: : Qm"(x)(1-x^2)+Qm'(x)(-2x)+m(m+1)Qm(x)=0 : The anwer as following : {(1-x^2)(x^2-1)^m}^(m+2) + {(x^2-1)^m+1}^(m+2)=0 : ^^^^^^^^^^^^^^^^ ^^^^^^^^^^ : ()內相乘後一負一正 : Qm(x)={(x^2-1)^m}^(m) => Qm'(x)={(x^2-1)^m}^(m+1) Qm"(x)=......^(m+2)-----(*) : 上式 => : (1-x^2){(x^2-1)^m}^(m+2)+{C(m+2) take 1}(-2x){(x^2-1)^m}^(m+1)+{C(m+2) take 2}* : ^^^^^^^^^^^^^ : 表組合C X 取 Y : (-2){(x^2-1)^m}^(m+2)+{(m+1)(2x)(x^2-1)^m}^(m+1)=0 : From (*) (1-x^2)Qm"(x)+m+2(-2x)Qm'(x)-(m^2+3m+2)Qm(x)+(m+1)Qm'(x)(2x)+Qm(x)(2m : ^2+4m+2)=0 : 化簡 : => Qm"(x)(1-x^2)+Qm'(x)(-2x)+m(m+1)Qm(x)=0------(proved) : It is a very interesting problem with concise anwer,right? mine: 令U=(x^2-1)^m ~~~>Qm(x)=U^(m) U'=m[(x^2-1)^m-1]2x 左右同乘x^2-1還原 => (x^2-1)U'=2mxU 左右各微m+1次 (x^2-1)U^(m+2)+(C m+1 take 1)(2x)U^(m+1)+(C m+1 take 2)2U^(m) =2m{xU^(m+1)+(C m+1 take 1)U^(m)} 移向整理(至右邊) (1-x^2)Qm''(x)-2xQm'(x)+m(m+1)Qm(x)=0 proved ^^~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.249.225