看板 NTUEE107HW 關於我們 聯絡資訊
(這是一個數學系的朋友告訴我的方法,有點嚇人) ※ 引述《kafai (雲^^)》之銘言: the followings Ψ noted as f since f" + k^2 * f = 0 (*) k ≠ 0 assume f(0) = A , f'(0)/k = B let g(x) = f(x) - ( A*cos(kx) + B*sin(kx) ) (想要證明 g(x) = 0 ) then g'(x) = f'(x) - ( -kA*sin(kx) + kB*cos(kx) ) g"(x) = f"(x) - ( -k^2*A*cos(kx) - k^2*B*sin(kx) ) = -k^2*f(x) + k^2*( A*cos(kx) + B*sin(kx) ) = -k^2 * g(x) g(0) = f(0) - A = 0 , g'(0) = f'(0) - kB = 0 let h(x) = (g'(x))^2 + (k*g(x))^2 , then h(0) = 0 h'(x) = g"(x) * 2g'(x) + k*g'(x) * 2k*g(x) = 2g'(x) ( g"(x) + k^2*g(x) ) = 0 So h(x) is a constant => h(x) = 0 => g'(x) = g(x) = 0 => f(x) = A*cos(kx) + B*sin(kx) = f(0)*cos(kx) + (f'(0)/k)*sin(kx) : since f(0)=0, : f(0) = A' = 0 : f = B' * sin(kx) : i.e. Ψ = A * sin(kx) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.230.40.176
kafai:你那麼有空爬文… 推140.112.239.182 11/08
JGU:我是昨天才知道這個方法... 推 61.230.40.184 11/08
kafai:不用複習微分方程吧?XD 推140.112.239.182 11/08