看板 NTUEE107HW 關於我們 聯絡資訊
※ 引述《JGU (ROYGBIV)》之銘言: : (這是一個數學系的朋友告訴我的方法,有點嚇人) : ※ 引述《kafai (雲^^)》之銘言: : the followings Ψ noted as f : since f" + k^2 * f = 0 (*) k ≠ 0 : assume f(0) = A , f'(0)/k = B : let g(x) = f(x) - ( A*cos(kx) + B*sin(kx) ) (想要證明 g(x) = 0 ) : then g'(x) = f'(x) - ( -kA*sin(kx) + kB*cos(kx) ) : g"(x) = f"(x) - ( -k^2*A*cos(kx) - k^2*B*sin(kx) ) : = -k^2*f(x) + k^2*( A*cos(kx) + B*sin(kx) ) : = -k^2 * g(x) : g(0) = f(0) - A = 0 , g'(0) = f'(0) - kB = 0 : let h(x) = (g'(x))^2 + (k*g(x))^2 , then h(0) = 0 : h'(x) = g"(x) * 2g'(x) + k*g'(x) * 2k*g(x) : = 2g'(x) ( g"(x) + k^2*g(x) ) = 0 : So h(x) is a constant => h(x) = 0 => g'(x) = g(x) = 0 : => f(x) = A*cos(kx) + B*sin(kx) = f(0)*cos(kx) + (f'(0)/k)*sin(kx) : : since f(0)=0, : : f(0) = A' = 0 : : f = B' * sin(kx) : : i.e. Ψ = A * sin(kx) 我怎麼記的好像不用這麼麻煩.......^^" -- Humans are like the earth's dust. One life is as swift as a dream, But everyone strives to live on....... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 210.58.164.153
kafai:背甚麼數 推140.112.239.182 11/08
Deatheye:還是看不懂你在說什麼..... 推 210.58.164.153 11/08
micool:推看不懂..其實我也看不懂..XD 推140.112.240.183 11/09