作者Deatheye (寢ます)
看板NTUEE107HW
標題Re: phi(x)=a sin(kx) 的原因
時間Sat Nov 8 22:20:28 2003
※ 引述《JGU (ROYGBIV)》之銘言:
: (這是一個數學系的朋友告訴我的方法,有點嚇人)
: ※ 引述《kafai (雲^^)》之銘言:
: the followings Ψ noted as f
: since f" + k^2 * f = 0 (*) k ≠ 0
: assume f(0) = A , f'(0)/k = B
: let g(x) = f(x) - ( A*cos(kx) + B*sin(kx) ) (想要證明 g(x) = 0 )
: then g'(x) = f'(x) - ( -kA*sin(kx) + kB*cos(kx) )
: g"(x) = f"(x) - ( -k^2*A*cos(kx) - k^2*B*sin(kx) )
: = -k^2*f(x) + k^2*( A*cos(kx) + B*sin(kx) )
: = -k^2 * g(x)
: g(0) = f(0) - A = 0 , g'(0) = f'(0) - kB = 0
: let h(x) = (g'(x))^2 + (k*g(x))^2 , then h(0) = 0
: h'(x) = g"(x) * 2g'(x) + k*g'(x) * 2k*g(x)
: = 2g'(x) ( g"(x) + k^2*g(x) ) = 0
: So h(x) is a constant => h(x) = 0 => g'(x) = g(x) = 0
: => f(x) = A*cos(kx) + B*sin(kx) = f(0)*cos(kx) + (f'(0)/k)*sin(kx)
: : since f(0)=0,
: : f(0) = A' = 0
: : f = B' * sin(kx)
: : i.e. Ψ = A * sin(kx)
我怎麼記的好像不用這麼麻煩.......^^"
--
Humans are like the earth's dust.
One life is as swift as a dream,
But everyone strives to live on.......
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 210.58.164.153
→ kafai:背甚麼數 推140.112.239.182 11/08
→ Deatheye:還是看不懂你在說什麼..... 推 210.58.164.153 11/08
→ micool:推看不懂..其實我也看不懂..XD 推140.112.240.183 11/09