看板 NTUEE108HW 關於我們 聯絡資訊
在課本215頁的Theorem 4.5 提到: Let V be a subspce of Rn having dimension k. Then any two of the following conditions about a subset S of V imply that S is a basis for V. (a) S is lin. independent. (b) S is a spanning set for V. (c) S contains exactly k vectors 所以只要滿足上面任一兩個 那S就是V的一個basis 可是216頁又提出三個判斷basis的步驟: (i) Show that B is contained in V. (ii) Show that B is lin. independent. (iii) Compute the dimension of V, and confirm that the number of vectors in B equals dim V. 第二和第三步驟 就已經和前一頁的(a),(c)符合 為什麼要有步驟一啊?? 請指導...(拯救XD) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.27
timrau:(i)是在驗證定理的前提正確 140.112.5.8 04/24
tsukasa2004:你注意一下定理的最後一行 about a "subset" 140.112.239.63 04/26
tsukasa2004:S of V 所以才要檢查(i) 140.112.239.63 04/26