作者AaronSWAT (Aaron)
看板NTUEE108HW
標題[問題]一個線代的問題..
時間Sun Apr 24 16:55:40 2005
在課本215頁的Theorem 4.5 提到:
Let V be a subspce of Rn having dimension k. Then any two of the following
conditions about a subset S of V imply that S is a basis for V.
(a) S is lin. independent.
(b) S is a spanning set for V.
(c) S contains exactly k vectors
所以只要滿足上面任一兩個 那S就是V的一個basis
可是216頁又提出三個判斷basis的步驟:
(i) Show that B is contained in V.
(ii) Show that B is lin. independent.
(iii) Compute the dimension of V, and confirm that the number of vectors in
B equals dim V.
第二和第三步驟 就已經和前一頁的(a),(c)符合 為什麼要有步驟一啊??
請指導...(拯救XD)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.240.27
推 timrau:(i)是在驗證定理的前提正確 140.112.5.8 04/24
推 tsukasa2004:你注意一下定理的最後一行 about a "subset" 140.112.239.63 04/26
→ tsukasa2004:S of V 所以才要檢查(i) 140.112.239.63 04/26