看板 NTUIB99 關於我們 聯絡資訊
※ [本文轉錄自 NTU-Exam 看板] 作者: sheepout (羊咩咩) 看板: NTU-Exam 標題: [試題] 94下 張秀瑜 微積分乙 時間: Thu Jun 22 14:25:25 2006 課程名稱︰微積分乙 課程性質︰共同必修 課程教師︰張秀瑜 開課系所︰管院 考試時間︰94學年度下學期6月22號 是否需發放獎勵金: *[1;33m(如未明確表示,則不予發放)*[m 試題 : 1. use the chain rule to find δz/δs and δ^2z/δtδs (1) z=x^2y+3xy^4, x=s^2t, y=s lnt (2) z=f(s+at)+g(s-at), where a is a constant and f,g are differentiable. (3) z=f(x,y) is differentiable, where x=cost e^t ,y=sint e^t 2. if f is homogeneous of degree n (that is f(tx,ty)=t^n(x,y) for all t), show that f (tx,ty)= t^(n-1)f (x,y) x x 3. find the points on the ellipsoid x^2+2y^2+3z^2=1 where the tangent plane is parallel to the plane 3x-y+3z=1 4. find the local maximum and minimum values of f=x^3-3x-y^3+12y 5. explain the method of lagrange multipliers works in finding the extreme values of f(x,y,z) subject to the constraint g(x,y,z)=k 6. use a double integral to find the volume of the tetrahedron bounded by the planes x+y+z=2, x=3y, x=0, and z=o 7. sketch the regions and evaluate the integrals: (1) change the order to : 1 1 ________ ∫ ∫ √x^3 + 1 dxdy 0 √y ________ (2) convert to polar coordinates: 0 √a^2-y^2 ∫ ∫ (a^2-x^2-y^2)^2/3 dxdy -a 0 ∞ ___ ∞ 8. use the result: ∫ e^(-x^2) dx = √π to evaluate ∫ x^2 e^(-x^2) dx -∞ 0 第五題是要描述這個方法 而不是解釋它的原理 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.238.22
geobrownbear:這張有給他難到 06/22 17:09
-- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.101