看板 NTUMath91 關於我們 聯絡資訊
※ 引述《yanyanstar (欣欣)》之銘言: : 1.已知九個人V1.V2...中V1和兩個人握過手,V2.V3各和四個人握過手 : V4.V5.V6.V7個和五個人握過手,V8.V9個和六個人握過手,證明這九個人 : 中一定可以找出三個人,互相握過手. : 2.證明任意的九個人中,一定有三個人互相認識或者有四個人互相不認識. 這題好像是用平面上九個點(任三個點不共線),認識用紅線畫,不認識用籃線畫, (基本上所謂的認識是你知道我是誰而且我也知道你是誰, 所以就相當於兩人連成一線) 結果一定會有一個(紅色的三角形或者藍色的四邊形(此四邊形包括對角線)) 有點類似歸納法以及反證法去討論這事實。 一開始先說六人必有三人認識或三人不認識。(就是紅三角及藍三角) : 3.俱樂部裡有14個人想打橋牌,已知過去每個人都曾與其中的五個人合作過 : 現在規定要四個人中任意兩個人都未合作過,才准許在一起打一局橋牌 : 在這種規定下,只打了三局就無法在繼續進行下去.如果這時候俱樂部又 : 加入一個新來的年輕人,他與所有的人都沒有合作過,證明一定可以再打一 : 局. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.187.34.70 ※ 編輯: roloc 來自: 218.187.34.70 (11/02 00:18)