看板 NTUNL 關於我們 聯絡資訊
幾年前寫的,會跑出兩個圖。第一個是把理論計算和實驗方法取得的 Lyapunov 指數隨 參數變化 plot 出來;第二個是把 fixed points 找出來,可看出隨參數變化有 period doubling。 clc; close all; clear all; I=100; % Iteration n=5; % separation between pairs A=1; % f(x)=ux(1-x), B=4; %"u" from A to B ai=0.001; % resolution of parameter "u" f=round((B-A)/ai); for u=1:f U=u*ai; x(u,1)=0.501; % Iteration and calculating theoretical Lyapunov exponent sum=0; for i=1:I x(u,i+1)=(U+A)*x(u,i)*(1-x(u,i)); % logistic map sum=sum+log(abs((U+A)*(1-2*(1-x(u,i))))); end Lt(u)=sum/I; % find closest points then calculate largest Lyapunov exponent counter=0; Lsum=0; for i=2:I+1 if abs(x(u,1)-x(u,i))<0.05 if 0<abs(x(u,1)-x(u,i)) if i+n<I if 0<abs(x(u,1+n)-x(u,i+n)) counter=counter+1; L(counter)=(1/n)*log(abs(x(u,1+n)-x(u,i+n))/abs(x(u,1)-x(u,i))); Lsum=Lsum+L(counter); end end end end end Lave(u)=Lsum/counter; end % plot theoretical and experimental data of L.E. together figure(1) plot([A+ai:ai:B],Lave,[A+ai:ai:B],Lt) figure(2) u=1:f; i=round(0.7*I):I; fixed=plot((u*ai+A),x(u,i),'.') set(fixed,'MarkerSize',4.5); -- "Bureaucrats!" Mallory scoffed cheerily. "They might known this would happen, if they'd properly studied Catastrophist theory. It is a concatenation of synergistic interactions; the whole system is on the PERIOD-DOUBLING ROUTE TO CHAOS!" ----《Difference Engine》 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.228.192.166
Keelungman:這個好!!! 06/04 23:03