看板 NTUfin01 關於我們 聯絡資訊
Proof. Suppose to the contrary that A is singular, but adjA is nonsingular. => det(A)= 0 & inv(adjA) exists ( inv(adjA) is the inverse matrix of adjA ) => A= det(A)inv(adjA)= 0inv(adjA)= O (zero matrix) => adjA= O (zero matrix) (-> <-) This contradicts the hypothesis that adjA is nonsingular. Hence, if A is singular, then adjA is singular. 這是矛盾法的證明方式 比較像考古題解答的證明 跟考古題做法一樣的同學 實習課拿考卷跟我要分數 T.A. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.218.128