看板 NtuBaChi 關於我們 聯絡資訊
我一個朋友問我的問題,我用生成函數法解出來的解法。(generating function) 這種方法適用於一般性的題目,不限特殊題型。 QUESTION: a[n] is a sequence such that a[0]=1, a[1]=1, and satsifies: n(n+1)a[n+1]=n(n-1)a[n]-(n-2)a[n-1], ........(**) 求a[n] 的一般項。 解:Let f(x):=a[0]+a[1]x+a[2]x^2+a[3]x^3+...... infinite sum a[0]=1 means f(0)=1 ...(*0) a[0]=1 means f'(0)=1 ...(*1) where f'(x):=df(x)/dx derivative of f(x) multiply (**) by x^(n-1) and sum over n=1 to infinity we get (d/dx)^2 f(x)=x(d/dx)^2 f(x)-x^2 (d/dx) (x^(-1)f(x)).....(*2) Note that d/dx (g(x) A(x)) = (d/dx g(x))A(x)+g(x)d/dx A(x) (*2) becomes 0=((x-1)(d/dx)^2-x d/dx+1)f(x) =(xd/dx (d/dx -1)-((d/dx)^2 -1)) f(x) =((x-1)d/dx -1) (d/dx-1) f(x) =((x-1)(d/dx- 1/(x-1))(d/dx -1) f(x) =(x-1)^2 (d/dx) ((1/(x-1)) (d/dx-1) f(x)) which implies 0=d/dx ((1/(x-1)) (d/dx-1) f(x)) which implies constant k=(1/(x-1)) (d/dx-1) f(x) Let x=0, we get k=1/(0-1) (d/dx-1)f(x)|(x=0) =0 by (*1) which implies (d/dx-1) f(x)=0 implies f(x)=ce^x, c=f(0)=1 by (*0) So f(x)=e^x=Sum_(n=0 to infty) (1/n!)x^n and get a[n]=1/n! 事實上我之前有用latex打出來。見 https://www.space.ntu.edu.tw/navigate/share/GLQQYXHYK9 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.4.182
emptyempty:只賺169>< 09/20 22:58
cgfdel:這到底是什麼.. 09/20 23:22
emptyempty:你怎麼考上電機系的? 09/21 00:10
storyo41662:理論上字數(按位元來算)應該有469個字 09/21 01:10
skif:我想我知到來源是誰 09/23 15:16