看板 Physics 關於我們 聯絡資訊
Chapter 8.7 Planetary Motion Kepler's Problem (l/r^2)dr θ(r) = ∫──────────────── + constant √2μ[E +(k/r)-(l^2/2μr^2)] Change variable by using u≡l/r and integral it, I have a problem when evaluating at last term, the following is the answer in the book: " We can choose the point from which θ is measured so that the constant is -π/2 " (-l^2/μk)u + 1 -αu + 1 sin (θ+constant) = ────────── = ───── √1+ 2El^2/μk^2 ε where α= l^2/μk ε= √1+2El^2/μk^2 問題是 要怎麼知道-π/2 這個值呢? 最後答案是 α/r = 1 + εcosθ 感謝您的回答<(_ _)> -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 163.24.253.61
kamikaze0415:就跟你說是用choose的嘛 04/20 03:47
kamikaze0415:這個問題本來沒有給定initial condition阿 04/20 03:48
gonghour:請問為何在8.4的時候θ=...有正負號,在這邊卻不用負號? 04/20 12:37