看板 Physics 關於我們 聯絡資訊
※ 引述《bisconect (隨便你叫)》之銘言: : if : 1) f(0) = g(0) : 2) f'(0) = g'(0) : 3) for any t, f''(t) = h(f(t)) and g''(t) = h(g(t)) : then : for any t, f(t) = g(t) : 請問以上這敘述是否為真? symbol \int: integral del: Dirac delta function h<f: h(f) f(t) - g(t) = [ f(t) - f(0) ] - [ g(t) - g(0) ] = \int_0^t [ f'(t') - g'(t') ] dt' = \int_0^t dt' \int_0^t' dt" [ f''(t") - g''(t") ] = \int_0^t dt' \int_0^t' dt" [ h(f(t")) - h(g(t")) ] If h is linear, then f(t) - g(t) = \int_0^t dt' \int_0^t' dt" h ( f(t") - g(t") ) However, f(t) - g(t) = \int dt" del(t-t") [ f(t") - g(t") ], it turns to be that [\int_0^t dt' \int_0^t' dt" h< - \int dt" del(t-t") ] ( f(t") - g(t") ) = 0 Because t is arbitrary, f(t") - g(t") must be zero. QED. ps: h has to be linear. If h is nonlinear, the statement is not necessarily true. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 70.171.59.112 ※ 編輯: chungweitw 來自: 70.171.59.112 (11/15 03:06)
bisconect:呃...對不起,我不太懂你的符號耶orz 我研究一下. 11/15 15:43