看板 Physics 關於我們 聯絡資訊
※ 引述《Frobenius (▽.(▽×▽φ)=0)》之銘言: : Show that : n-s : (s - n)! (-1) (2n - 2s)! : ────── = ──────── : (2s - 2n)! (n - s)! : Here s and n are integers with s < n. This result can be used to avoid : negative factorials such as in the series representations of the spherical : Neumann funtions and the Legendre functions of the second kind. (s-n)! = (s-n)(s-n-1)! = (s-n)(s-n-1)...(2s-2n+1)(2s-2n)! (s-n)!/(2s-2n)! = (-1)^(n-s) (n-s)(n-s+1)...(2n-2s-1) = (-1)^(n-s) (2n-2s-1)!/(n-s-1)! = (-1)^(n-s) [(2n-2s)!/(2n-2s)]/[(n-s)!/(n-s)] = (-1)^(n-s) (2n-2s)!/[2*(n-s)!] 請問哪裡錯?請指正,謝謝。 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.165.184.61
Frobenius:想不到為什麼會多了1/2? 02/24 23:11
akrsw:對,我不知道為何會多出 1/2。 02/24 23:16
※ 編輯: akrsw 來自: 218.165.184.61 (02/24 23:22)