看板 Physics 關於我們 聯絡資訊
Griffiths introduction to electrodynamics, third edition problem 5.54 Prove the uniqueness theorem sol: 用題目給的hint ∫▽.[U X (▽ X V)] dτ =∫{(▽ X V).(▽ X U) - U.[▽ X (▽ X V)]} dτ =∮[ U X (▽ X V)].da X : cross product V U a 上都有向量符號 難畫 略 As always, suppose we have two solutions, B1 (and A1) & B2 (and A2). define B3≡B2 - B1 (and A3≡A2 - A1) so we have ▽ X A3 = B3 and ▽ X B3 = ▽ X B1 - ▽ X B2 = μo J -μo J = 0 set U = V = A3 in above identity: ∫{(▽ X A3).(▽ X A3) - A3.[▽ X (▽ X A3)]} dτ =∫{(B3).(B3) - A3.[▽ X B3]} dτ =∫(B3)^2 dτ =∮[A3 X (▽ X A3)].da = ∮(A3 X B3).da but either A is specified(A3=0) or else B is specified(B3=0), at the surface In either case ∮(A3 X B3).da = 0 so ∫(B3)^2 dτ = 0 and hence B1 = B2 qed. 證明到這裡告一段落 http://farside.ph.utexas.edu/teaching/em/lectures/node62.html 上面是我在網路上找到的uniqueness theorem 在第(699)式 ▽ X B3 = 0 ...either B3 or A3 is zero 這裡開始,寫出來跟老師討論時,說:這個假設是有問題的 (不能確定其中之一的值是0 ?!?!) 所以底下的就不用看了... Griffiths的也這樣假設,請問這問題出在哪呢??? 感謝看完這篇 <(_ _)> -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.125.95.99