看板 Physics 關於我們 聯絡資訊
※ 引述《danny6430 (賴打)》之銘言: : 這是我在我工數課本上面算conformal mapping裡面的題目 : 大概的意思就是要你求出空間中的電位 : 在兩個軸的電位是110V : 還有一個X*Y=1這條雙曲線上的電位為60V : 要你求出空間中的電位 : 答案是110-50X*Y : 邊界條件帶進去正確... : 可是完全沒有頭緒要怎麼算! 1. w: z = x+iy -> z^2 w(z) = u + iv = z^2 => u = x^2 - y^2 v = 2xy Phi(x,y) = Psi(u,v) = Psi(w(z)), whrer Phi and Psi are electrostatic potentials mutually in the xy-plane and uv-plane. 2. By the symmetry of the infinite plane, the Laplacian equation in the uv-plane can be written as ( d^2/dv^2 ) Psi = 0, the boundary condition of which is Psi(v=0) = 110. This yields the solution Psi = av + 110, where a is a constant. 3. xy = 1 => v = 2 Psi(v=2) = 60 => 2a + 110 = 60 => a = -25 => Phi(x,y) = -25v + 100 = -50xy + 100. -- 我的興趣是瞎掰 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 24.250.207.135
akrsw:(離題)不太明白為何用mutually而不用respectively? 04/13 11:39
chungweitw:因為我用錯字了. 感謝. 04/13 11:52
chungweitw:然後, 應該是Laplace equation. 04/13 11:53