看板 Physics 關於我們 聯絡資訊
※ 引述《r02fsm39hecf (哈哈衛)》之銘言: : [領域] 大ㄧ普物 : [來源] 習題 : [題目] Prove a uniformly dense spherical shell exerts no gravitation : force on a particle located anywhere inside it . : [瓶頸] 試著切兩半來解 , 但要怎樣推廣到 anywhere F = GMm/r^2 Put the test mass on the z-axis with the coordinate (0,0,d), and set the radius of spherical to be R. (d < R) Because of the symmetry, we can only consider the z component of the force exerted on the test mass by the suface element of the shell. Denote r as - Gσm R^2 sinθdθ Rcosθ - d 2π∫------------------------ * ------------------------- [R^2 + d^2 - 2Rdcosθ] √[R^2 + d^2 - 2Rdcosθ] u = √[R^2 + d^2 - 2Rdcosθ] -2πGσmR R^2 - d^2 - u^2 = ----------∫----------------du 2d^2 u^2 -2πGσmR -(R^2 - d^2) R+d R+d = ---------- [ ------------ [ + (-u)[ ] 2d^2 u R-d R-d = 0 QED There are another one or two methods to prove it. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.124.102.140
Honor1984:only one equation can proof it. 11/09 13:59
Honor1984: prove 11/09 13:59