作者JohnMash (John)
看板Physics
標題Re: [問題] 有關梯度向量運算的問題
時間Sat Jan 23 23:01:56 2010
※ 引述《zero97442 (liner)》之銘言:
: 之前看流力書上看到一個式子
(V˙▽)V=(1/2)▽(V˙V)-V╳(▽╳V)
This is my 4th time to do such problems.
index repetition implies summation
d_i means d/dx_i
d(ij) means delta function
e(ijk) is full antisymmetric function and e(123)=1
[(V˙▽)V]_k=(V_i d_i)V_k=V_i (d_i V_k) (1)
(1/2)[▽(V˙V)]_k=(1/2)d_k (V_i V_i)=V_i (d_k V_i) (2)
[V╳(▽╳V)]_k=e_{kij} V_i (▽╳V)_j
=e_{kij} V_i e_{jmn} (d_m V_n)
=[d(km) d(in)-d(kn) d(im)] V_i (d_m V_n)
=V_i (d_k V_i) - V_i (d_i V_k) (3)
(2)-(3)= V_i (d_i V_k)=(1)
Done.
--
You want to learn General Relativity,
Quantum Field Theory, Particle Physics,
Lie Algebra, Representation Theory,
Differential Geometry?
Contact with me.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 112.105.200.221
推 jimiras:推 簡潔 01/23 23:26
→ zero97442:謝謝 01/24 00:01
推 amozartea:用epsilon是簡潔 但初次證明還是把分量寫出來算過較好 01/24 03:16
推 DDMO:這個問題怎麼好像很眼熟@@? 01/24 05:09
→ JohnMash:if you are not used to epsilon, 01/24 13:20
→ JohnMash:you can not derive any complicate formulas. 01/24 13:21