看板 Physics 關於我們 聯絡資訊
在 p > -1 ,且 Ef >> KT => Ef/(KT) >> 1 時之低溫極限下: p ∞ p ∞ E ∫ E F dE = ∫ ─────── dE 0 FD 0 (E-Ef)/kT e + 1 ----------------------------------------------------------------------------- 可藉由兩種方法計算之: 1. Sommerfeld's Method (http://tinyurl.com/3gk9d6v) (吳大猷理論物理的第五冊 熱力學,氣體運動論,統計力學的第十九章 , P427~P428) (無外力場下即不考慮自旋的情況) (另外 P427 最後一式中的 Binomial符號,括弧中應該改 2j 為 2j+1 這樣才正確) 2. Integrating by part (Ashley H. Carter, Classical and Statistical Thermodynamics , P358~P359) (考慮自旋的情況,所以能量密度為上例的兩倍) ※ 第二種方法技巧較少也較容易理解 ----------------------------------------------------------------------------- 1 p+1 ∞ 2n 1 d^(2n) p+1 ≒ ── [ Ef + Σ 2(kT) ( 1 - ──── ) ζ(2n) ──── ( Ef ) ] p+1 n=1 2^(2n-1) dEf^(2n) 1 p+1 ∞ 2n 1 (p+1)! p+1-2n = ── [ Ef + Σ 2(kT) ( 1 - ──── ) ζ(2n) ──── Ef ] p+1 n=1 2^(2n-1) (p+1-2n)! 1 p+1 ∞ 1 (p+1)! kT 2n = ── Ef [ 1 + Σ 2 ( 1 - ──── ) ζ(2n) ──── ( ─ ) ] p+1 n=1 2^(2n-1) (p+1-2n)! Ef 在此以無外力場下即不考慮自旋的情況當例子: 2 m 3/2 1/2 能量密度 g = 2πV ( ── ) E (若考慮自旋自動乘2) e h^2 Number N(T): 1/2 ∞ 2 m 3/2 ∞ E N(T) = ∫ g F dE = 2πV ( ── ) ∫ ─────── dE 0 e FD h^2 0 (E-Ef)/kT e + 1 4πV 3/2 3/2 π^2 kT 2 7 π^4 kT 4 ≒ ── (2m) Ef [ 1 + ── ( ─ ) + ─── ( ─ ) + … ] 3h^3 8 Ef 640 Ef ∞ 2 m 3/2 Ef(0) 1/2 N(0) = ∫ g F dE = 2πV ( ── ) ∫ E dE 0 e FD h^2 0 4πV 3/2 3/2 4πV 3/2 = ── (2m) Ef(0) = ── (2m Ef(0)) 3h^3 3h^3 又粒子數守恆 N(T) = N(0) 3/2 π^2 kT 2 7 π^4 kT 4 3/2 Ef [ 1 + ── ( ─ ) + ─── ( ─ ) + … ] = Ef(0) 8 Ef 640 Ef 3/2 3/2 π^2 kT 2 7 π^4 kT 4 -1 Ef = Ef(0) [ 1 + ── ( ─ ) + ─── ( ─ ) + … ] 8 Ef 640 Ef π^2 kT 2 7 π^4 kT 4 -2/3 Ef = Ef(0) [ 1 + ── ( ─ ) + ─── ( ─ ) + … ] 8 Ef 640 Ef (-2/3)! π^2 kT 2 7 π^4 kT 4 = Ef(0) { 1 + ──── [ ── ( ─ ) + ─── ( ─ ) ] 1!(-5/3)! 8 Ef 640 Ef (-2/3)! π^2 kT 2 7 π^4 kT 4 2 + ──── [ ── ( ─ ) + ─── ( ─ ) ] + … } 2!(-8/3)! 8 Ef 640 Ef 2 π^2 kT 2 7 π^4 kT 4 = Ef(0) { 1 - - [ ── ( ─ ) + ─── ( ─ ) ] 3 8 Ef 640 Ef 5 π^4 kT 4 7 π^6 kT 6 49 π^8 kT 8 + - [ ── ( ─ ) + ─── ( ─ ) + ──── ( ─ ) ] + … } 9 64 Ef 2560 Ef 409600 Ef π^2 kT 2 π^4 kT 4 ≒ Ef(0) [ 1 - ── ( ─ ) + ─── ( ─ ) + … ] 12 Ef 720 Ef π^2 kT 1 2 π^4 kT 4 ≒ Ef(0) { 1 - ── ( ── ────────── ) + ─── ( ─ ) + … } 12 π^2 kT 2 720 Ef Ef(0) [ 1 - ── ( ─ ) ] 12 Ef ------------------------------------------------------------------------------ Finally,we replace Ef in the "correction term" by Ef(0) = k Tf kT kT k T T ─ → ── = ── = ─ Ef Ef(0) k Tf Tf ------------------------------------------------------------------------------ π^2 T 1 2 π^4 T 4 ≒ Ef(0) { 1 - ── ( ─ ────────── ) + ─── ( ─ ) + … } 12 Tf π^2 T 2 720 Tf [ 1 - ── ( ─ ) ] 12 Tf π^2 T 2 π^2 T 2 2 π^4 T 4 ≒ Ef(0) { 1 - ── ( ─ ) [ 1 + ── ( ─ ) ] + ─── ( ─ ) + … } 12 Tf 12 Tf 720 Tf π^2 T 2 π^2 T 2 π^4 T 4 ≒ Ef(0) { 1 - ── ( ─ ) [ 1 + ── ( ─ ) + ─── ( ─ ) ] 12 Tf 6 Tf 144 Tf π^4 T 4 + ─── ( ─ ) + … } 720 Tf π^2 T 2 π^4 T 4 π^6 T 6 ≒ Ef(0) { 1 - ── ( ─ ) - ── ( ─ ) - ─── ( ─ ) ] 12 Tf 72 Tf 1728 Tf π^4 T 4 + ─── ( ─ ) + … } 720 Tf π^2 T 2 π^4 T 4 ≒ Ef(0) { 1 - ── ( ─ ) - ── ( ─ ) + … ] 12 Tf 80 Tf Frermi Energy Ef(T): π^2 T 2 π^4 T 4 Ef(T) ≒ Ef(0) { 1 - ── ( ─ ) - ── ( ─ ) + … ] 12 Tf 80 Tf http://en.wikipedia.org/wiki/Fermi_energy The Internal Energy U(T): 3/2 ∞ 2 m 3/2 ∞ E U(T) = ∫ E g F dE = 2πV ( ── ) ∫ ─────── dE 0 e FD h^2 0 (E-Ef)/kT e + 1 4πV 3/2 5/2 5 π^2 kT 2 7 π^4 kT 4 ≒ ── (2m) Ef [ 1 + ─── ( ─ ) - ─── ( ─ ) + … ] 5h^3 8 Ef 384 Ef 3 4πV 3/2 Ef(T) 5/2 = - ── (2m Ef(0)) Ef(0) ( ── ) 5 3h^3 Ef(0) 5 π^2 kT 2 7 π^4 kT 4 .[ 1 + ─── ( ─ ) - ─── ( ─ ) + … ] 8 Ef 384 Ef 3 π^2 T 2 π^4 T 4 5/2 ≒ - N(0) Ef(0) [ 1 - ── ( ─ ) - ── ( ─ ) + … ] 5 12 Tf 80 Tf 5 π^2 kT 1 2 7 π^4 kT 4 .{ 1 + ─── ( ── ────────── ) - ─── ( ─ ) + … } 8 Ef(0) π^2 kT 2 384 Ef [ 1 - ── ( ─ ) ] 12 Ef ------------------------------------------------------------------------------ Finally,we replace Ef in the "correction term" by Ef(0) = k Tf kT kT k T T ─ → ── = ── = ─ Ef Ef(0) k Tf Tf ------------------------------------------------------------------------------ 3 π^2 T 2 π^4 T 4 5/2 ≒ - N(0) Ef(0) { 1 - [ ── ( ─ ) + ── ( ─ ) ] + … } 5 12 Tf 80 Tf 5 π^2 T 1 2 7 π^4 T 4 .{ 1 + ─── ( ─ ────────── ) - ─── ( ─ ) + … } 8 Tf π^2 T 2 384 Tf [ 1 - ── ( ─ ) ] 12 Tf 3 (5/2)! π^2 T 2 π^4 T 4 ≒ - N(0) Ef(0) { 1 - ──── [ ── ( ─ ) + ── ( ─ ) ] 5 1!(3/2)! 12 Tf 80 Tf (5/2)! π^2 T 2 π^4 T 4 2 + ──── [ ── ( ─ ) + ── ( ─ ) ] + … } 2!(1/2)! 12 Tf 80 Tf 5 π^2 T 2 π^2 T 2 2 7 π^4 T 4 .{ 1 + ─── ( ─ ) [ 1 + ── ( ─ ) ] - ─── ( ─ ) + … } 8 Tf 12 Tf 384 Tf 3 5 π^2 T 2 π^4 T 4 = - N(0) Ef(0) { 1 - - [ ── ( ─ ) + ── ( ─ ) ] 5 2 12 Tf 80 Tf 15 π^4 T 4 π^6 T 6 π^8 T 8 + ─ [ ── ( ─ ) + ── ( ─ ) + ── ( ─ ) ] + … } 8 144 Tf 480 Tf 6400 Tf 5 π^2 T 2 π^2 T 2 π^4 T 4 .{ 1 + ─── ( ─ ) [ 1 + ── ( ─ ) + ── ( ─ ) ] 8 Tf 6 Tf 144 Tf 7 π^4 T 4 - ─── ( ─ ) + … } 384 Tf 3 5 π^2 T 2 7 π^4 T 4 ≒ - N(0) Ef(0) [ 1 - ─── ( ─ ) - ─── ( ─ ) + … ] 5 24 Tf 384 Tf 5 π^2 T 2 5 π^4 T 4 7 π^4 T 4 .[ 1 + ─── ( ─ ) + ─── ( ─ ) - ─── ( ─ ) + … ] 8 Tf 48 Tf 384 Tf 3 5 π^2 T 2 7 π^4 T 4 = - N(0) Ef(0) [ 1 - ─── ( ─ ) - ─── ( ─ ) + … ] 5 24 Tf 384 Tf 5 π^2 T 2 11π^4 T 4 .[ 1 + ─── ( ─ ) + ─── ( ─ ) + … ] 8 Tf 128 Tf 3 5 π^2 T 2 π^4 T 4 = - N(0) Ef(0) [ 1 + ─── ( ─ ) - ── ( ─ ) + … ] 5 12 Tf 16 Tf 3 5 π^2 T 2 π^4 T 4 U(T) = - N(0) Ef(0) [ 1 + ─── ( ─ ) - ── ( ─ ) + … ] 5 12 Tf 16 Tf The Electronic Capacity Ce(T): d U(T) 3 Ef(0) 5 π^2 T π^4 T 3 Ce(T) = ─── = - N(0) ── [ ─── ( ─ ) - ── ( ─ ) + … ] d T 5 Tf 6 Tf 4 Tf π^2 T 3 π^2 T 3 = ── N(0) k [ ( ─ ) - ─── ( ─ ) + … ] 2 Tf 10 Tf The Entropy S(T): T Ce(T') dT' T π^2 1 3 π^2 T' 2 S(T) = ∫ ───── = ∫ ── N(0) k [ ( ─ ) - ─── ( ─ ) + … ] dT' 0 T' 0 2 Tf 10 Tf Tf π^2 T π^2 T 3 = ── N(0) k [ ( ─ ) - ── ( ─ ) + … ] 2 Tf 10 Tf π^2 T π^4 T 3 = N(0) k [ ── ( ─ ) - ── ( ─ ) + … ] 2 Tf 20 Tf The Helmholtz function F(T): F(T) = U(T) - T S(T) 3 5 π^2 T 2 π^4 T 4 = - N(0) k Tf [ 1 + ─── ( ─ ) - ── ( ─ ) + … ] 5 12 Tf 16 Tf π^2 T 2 π^4 T 4 - N(0) k Tf [ ── ( ─ ) - ── ( ─ ) + … ] 2 Tf 20 Tf 3 π^2 T 2 3 π^4 T 4 = N(0) k Tf [ - + ── ( ─ ) - ─── ( ─ ) + … ] 5 4 Tf 80 Tf π^2 T 2 π^4 T 4 - N(0) k Tf [ ── ( ─ ) - ── ( ─ ) + … ] 2 Tf 20 Tf 3 π^2 T 2 π^4 T 4 = N(0) k Tf [ - - ── ( ─ ) + ── ( ─ ) + … ] 5 4 Tf 80 Tf 3 5 π^2 T 2 π^4 T 4 = - N(0) k Tf [ 1 - ─── ( ─ ) + ─── ( ─ ) + … ] 5 12 Tf 48 Tf The Fermion Gas Pressure P(T): 因為 P = - ( ∂ F/∂ V ) T,N 2 N(0) k Tf 5 π^2 T 2 P(T) = - ───── [ 1 + ─── ( ─ ) + … ] 5 V 12 Tf 現在就剩如何將 F 對 V 偏微分的問題了,請問有人知道如何得到這個結果嗎? 感激不盡^^ -- 電子Dirac 方程式: [c(α.p) + β m0 c^2 + V( r )]Ψ = i hbar dΨ/dt -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.160.213.211
chungweitw:Tf 會和體積有關. 03/24 02:32
chungweitw:因為 Kf^3 = 3 pi^2 N/V 03/24 02:32
zys:看起來好難喔@@.....xd 03/24 20:25
※ 編輯: Frobenius 來自: 118.161.245.10 (04/21 15:12)
s23325522:靠~天書啊 03/04 13:07
※ 編輯: Frobenius 來自: 118.161.243.220 (04/03 17:21)