作者Frobenius (▽.(▽×▽φ)=0)
看板Physics
標題Re: [問題] 強簡併之 Fermi-Dirac 氣體:能量於低뜠…
時間Wed Mar 24 02:22:53 2010
在 p > -1 ,且 Ef >> KT => Ef/(KT) >> 1 時之低溫極限下:
p
∞ p ∞ E
∫ E F dE = ∫ ─────── dE
0 FD 0 (E-Ef)/kT
e + 1
-----------------------------------------------------------------------------
可藉由兩種方法計算之:
1. Sommerfeld's Method (
http://tinyurl.com/3gk9d6v)
(吳大猷理論物理的第五冊 熱力學,氣體運動論,統計力學的第十九章 , P427~P428)
(無外力場下即不考慮自旋的情況)
(另外 P427 最後一式中的 Binomial符號,括弧中應該改 2j 為 2j+1 這樣才正確)
2. Integrating by part
(Ashley H. Carter, Classical and Statistical Thermodynamics , P358~P359)
(考慮自旋的情況,所以能量密度為上例的兩倍)
※ 第二種方法技巧較少也較容易理解
-----------------------------------------------------------------------------
1 p+1 ∞ 2n 1 d^(2n) p+1
≒ ── [ Ef + Σ 2(kT) ( 1 - ──── ) ζ(2n) ──── ( Ef ) ]
p+1 n=1 2^(2n-1) dEf^(2n)
1 p+1 ∞ 2n 1 (p+1)! p+1-2n
= ── [ Ef + Σ 2(kT) ( 1 - ──── ) ζ(2n) ──── Ef ]
p+1 n=1 2^(2n-1) (p+1-2n)!
1 p+1 ∞ 1 (p+1)! kT 2n
= ── Ef [ 1 + Σ 2 ( 1 - ──── ) ζ(2n) ──── ( ─ ) ]
p+1 n=1 2^(2n-1) (p+1-2n)! Ef
在此以無外力場下即不考慮自旋的情況當例子:
2 m 3/2 1/2
能量密度 g = 2πV ( ── ) E (若考慮自旋自動乘2)
e h^2
Number N(T):
1/2
∞ 2 m 3/2 ∞ E
N(T) = ∫ g F dE = 2πV ( ── ) ∫ ─────── dE
0 e FD h^2 0 (E-Ef)/kT
e + 1
4πV 3/2 3/2 π^2 kT 2 7 π^4 kT 4
≒ ── (2m) Ef [ 1 + ── ( ─ ) + ─── ( ─ ) + … ]
3h^3 8 Ef 640 Ef
∞ 2 m 3/2 Ef(0) 1/2
N(0) = ∫ g F dE = 2πV ( ── ) ∫ E dE
0 e FD h^2 0
4πV 3/2 3/2 4πV 3/2
= ── (2m) Ef(0) = ── (2m Ef(0))
3h^3 3h^3
又粒子數守恆 N(T) = N(0)
3/2 π^2 kT 2 7 π^4 kT 4 3/2
Ef [ 1 + ── ( ─ ) + ─── ( ─ ) + … ] = Ef(0)
8 Ef 640 Ef
3/2 3/2 π^2 kT 2 7 π^4 kT 4 -1
Ef = Ef(0) [ 1 + ── ( ─ ) + ─── ( ─ ) + … ]
8 Ef 640 Ef
π^2 kT 2 7 π^4 kT 4 -2/3
Ef = Ef(0) [ 1 + ── ( ─ ) + ─── ( ─ ) + … ]
8 Ef 640 Ef
(-2/3)! π^2 kT 2 7 π^4 kT 4
= Ef(0) { 1 + ──── [ ── ( ─ ) + ─── ( ─ ) ]
1!(-5/3)! 8 Ef 640 Ef
(-2/3)! π^2 kT 2 7 π^4 kT 4 2
+ ──── [ ── ( ─ ) + ─── ( ─ ) ] + … }
2!(-8/3)! 8 Ef 640 Ef
2 π^2 kT 2 7 π^4 kT 4
= Ef(0) { 1 - - [ ── ( ─ ) + ─── ( ─ ) ]
3 8 Ef 640 Ef
5 π^4 kT 4 7 π^6 kT 6 49 π^8 kT 8
+ - [ ── ( ─ ) + ─── ( ─ ) + ──── ( ─ ) ] + … }
9 64 Ef 2560 Ef 409600 Ef
π^2 kT 2 π^4 kT 4
≒ Ef(0) [ 1 - ── ( ─ ) + ─── ( ─ ) + … ]
12 Ef 720 Ef
π^2 kT 1 2 π^4 kT 4
≒ Ef(0) { 1 - ── ( ── ────────── ) + ─── ( ─ ) + … }
12 π^2 kT 2 720 Ef
Ef(0) [ 1 - ── ( ─ ) ]
12 Ef
------------------------------------------------------------------------------
Finally,we replace Ef in the "correction term" by Ef(0) = k Tf
kT kT k T T
─ → ── = ── = ─
Ef Ef(0) k Tf Tf
------------------------------------------------------------------------------
π^2 T 1 2 π^4 T 4
≒ Ef(0) { 1 - ── ( ─ ────────── ) + ─── ( ─ ) + … }
12 Tf π^2 T 2 720 Tf
[ 1 - ── ( ─ ) ]
12 Tf
π^2 T 2 π^2 T 2 2 π^4 T 4
≒ Ef(0) { 1 - ── ( ─ ) [ 1 + ── ( ─ ) ] + ─── ( ─ ) + … }
12 Tf 12 Tf 720 Tf
π^2 T 2 π^2 T 2 π^4 T 4
≒ Ef(0) { 1 - ── ( ─ ) [ 1 + ── ( ─ ) + ─── ( ─ ) ]
12 Tf 6 Tf 144 Tf
π^4 T 4
+ ─── ( ─ ) + … }
720 Tf
π^2 T 2 π^4 T 4 π^6 T 6
≒ Ef(0) { 1 - ── ( ─ ) - ── ( ─ ) - ─── ( ─ ) ]
12 Tf 72 Tf 1728 Tf
π^4 T 4
+ ─── ( ─ ) + … }
720 Tf
π^2 T 2 π^4 T 4
≒ Ef(0) { 1 - ── ( ─ ) - ── ( ─ ) + … ]
12 Tf 80 Tf
Frermi Energy Ef(T):
π^2 T 2 π^4 T 4
Ef(T) ≒ Ef(0) { 1 - ── ( ─ ) - ── ( ─ ) + … ]
12 Tf 80 Tf
http://en.wikipedia.org/wiki/Fermi_energy
The Internal Energy U(T):
3/2
∞ 2 m 3/2 ∞ E
U(T) = ∫ E g F dE = 2πV ( ── ) ∫ ─────── dE
0 e FD h^2 0 (E-Ef)/kT
e + 1
4πV 3/2 5/2 5 π^2 kT 2 7 π^4 kT 4
≒ ── (2m) Ef [ 1 + ─── ( ─ ) - ─── ( ─ ) + … ]
5h^3 8 Ef 384 Ef
3 4πV 3/2 Ef(T) 5/2
= - ── (2m Ef(0)) Ef(0) ( ── )
5 3h^3 Ef(0)
5 π^2 kT 2 7 π^4 kT 4
.[ 1 + ─── ( ─ ) - ─── ( ─ ) + … ]
8 Ef 384 Ef
3 π^2 T 2 π^4 T 4 5/2
≒ - N(0) Ef(0) [ 1 - ── ( ─ ) - ── ( ─ ) + … ]
5 12 Tf 80 Tf
5 π^2 kT 1 2 7 π^4 kT 4
.{ 1 + ─── ( ── ────────── ) - ─── ( ─ ) + … }
8 Ef(0) π^2 kT 2 384 Ef
[ 1 - ── ( ─ ) ]
12 Ef
------------------------------------------------------------------------------
Finally,we replace Ef in the "correction term" by Ef(0) = k Tf
kT kT k T T
─ → ── = ── = ─
Ef Ef(0) k Tf Tf
------------------------------------------------------------------------------
3 π^2 T 2 π^4 T 4 5/2
≒ - N(0) Ef(0) { 1 - [ ── ( ─ ) + ── ( ─ ) ] + … }
5 12 Tf 80 Tf
5 π^2 T 1 2 7 π^4 T 4
.{ 1 + ─── ( ─ ────────── ) - ─── ( ─ ) + … }
8 Tf π^2 T 2 384 Tf
[ 1 - ── ( ─ ) ]
12 Tf
3 (5/2)! π^2 T 2 π^4 T 4
≒ - N(0) Ef(0) { 1 - ──── [ ── ( ─ ) + ── ( ─ ) ]
5 1!(3/2)! 12 Tf 80 Tf
(5/2)! π^2 T 2 π^4 T 4 2
+ ──── [ ── ( ─ ) + ── ( ─ ) ] + … }
2!(1/2)! 12 Tf 80 Tf
5 π^2 T 2 π^2 T 2 2 7 π^4 T 4
.{ 1 + ─── ( ─ ) [ 1 + ── ( ─ ) ] - ─── ( ─ ) + … }
8 Tf 12 Tf 384 Tf
3 5 π^2 T 2 π^4 T 4
= - N(0) Ef(0) { 1 - - [ ── ( ─ ) + ── ( ─ ) ]
5 2 12 Tf 80 Tf
15 π^4 T 4 π^6 T 6 π^8 T 8
+ ─ [ ── ( ─ ) + ── ( ─ ) + ── ( ─ ) ] + … }
8 144 Tf 480 Tf 6400 Tf
5 π^2 T 2 π^2 T 2 π^4 T 4
.{ 1 + ─── ( ─ ) [ 1 + ── ( ─ ) + ── ( ─ ) ]
8 Tf 6 Tf 144 Tf
7 π^4 T 4
- ─── ( ─ ) + … }
384 Tf
3 5 π^2 T 2 7 π^4 T 4
≒ - N(0) Ef(0) [ 1 - ─── ( ─ ) - ─── ( ─ ) + … ]
5 24 Tf 384 Tf
5 π^2 T 2 5 π^4 T 4 7 π^4 T 4
.[ 1 + ─── ( ─ ) + ─── ( ─ ) - ─── ( ─ ) + … ]
8 Tf 48 Tf 384 Tf
3 5 π^2 T 2 7 π^4 T 4
= - N(0) Ef(0) [ 1 - ─── ( ─ ) - ─── ( ─ ) + … ]
5 24 Tf 384 Tf
5 π^2 T 2 11π^4 T 4
.[ 1 + ─── ( ─ ) + ─── ( ─ ) + … ]
8 Tf 128 Tf
3 5 π^2 T 2 π^4 T 4
= - N(0) Ef(0) [ 1 + ─── ( ─ ) - ── ( ─ ) + … ]
5 12 Tf 16 Tf
3 5 π^2 T 2 π^4 T 4
U(T) = - N(0) Ef(0) [ 1 + ─── ( ─ ) - ── ( ─ ) + … ]
5 12 Tf 16 Tf
The Electronic Capacity Ce(T):
d U(T) 3 Ef(0) 5 π^2 T π^4 T 3
Ce(T) = ─── = - N(0) ── [ ─── ( ─ ) - ── ( ─ ) + … ]
d T 5 Tf 6 Tf 4 Tf
π^2 T 3 π^2 T 3
= ── N(0) k [ ( ─ ) - ─── ( ─ ) + … ]
2 Tf 10 Tf
The Entropy S(T):
T Ce(T') dT' T π^2 1 3 π^2 T' 2
S(T) = ∫ ───── = ∫ ── N(0) k [ ( ─ ) - ─── ( ─ ) + … ] dT'
0 T' 0 2 Tf 10 Tf Tf
π^2 T π^2 T 3
= ── N(0) k [ ( ─ ) - ── ( ─ ) + … ]
2 Tf 10 Tf
π^2 T π^4 T 3
= N(0) k [ ── ( ─ ) - ── ( ─ ) + … ]
2 Tf 20 Tf
The Helmholtz function F(T):
F(T) = U(T) - T S(T)
3 5 π^2 T 2 π^4 T 4
= - N(0) k Tf [ 1 + ─── ( ─ ) - ── ( ─ ) + … ]
5 12 Tf 16 Tf
π^2 T 2 π^4 T 4
- N(0) k Tf [ ── ( ─ ) - ── ( ─ ) + … ]
2 Tf 20 Tf
3 π^2 T 2 3 π^4 T 4
= N(0) k Tf [ - + ── ( ─ ) - ─── ( ─ ) + … ]
5 4 Tf 80 Tf
π^2 T 2 π^4 T 4
- N(0) k Tf [ ── ( ─ ) - ── ( ─ ) + … ]
2 Tf 20 Tf
3 π^2 T 2 π^4 T 4
= N(0) k Tf [ - - ── ( ─ ) + ── ( ─ ) + … ]
5 4 Tf 80 Tf
3 5 π^2 T 2 π^4 T 4
= - N(0) k Tf [ 1 - ─── ( ─ ) + ─── ( ─ ) + … ]
5 12 Tf 48 Tf
The Fermion Gas Pressure P(T):
因為 P = - ( ∂ F/∂ V ) T,N
2 N(0) k Tf 5 π^2 T 2
P(T) = - ───── [ 1 + ─── ( ─ ) + … ]
5 V 12 Tf
現在就剩如何將 F 對 V 偏微分的問題了,請問有人知道如何得到這個結果嗎?
感激不盡^^
--
電子Dirac 方程式:
[c(α.p) + β m0 c^2 + V( r )]Ψ = i hbar dΨ/dt
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.160.213.211
推 chungweitw:Tf 會和體積有關. 03/24 02:32
→ chungweitw:因為 Kf^3 = 3 pi^2 N/V 03/24 02:32
推 zys:看起來好難喔@@.....xd 03/24 20:25
※ 編輯: Frobenius 來自: 118.161.245.10 (04/21 15:12)
推 s23325522:靠~天書啊 03/04 13:07
※ 編輯: Frobenius 來自: 118.161.243.220 (04/03 17:21)