作者chungweitw (.)
看板Physics
標題[問題] Gaussian integral
時間Sat Jun 19 20:59:51 2010
更新: 問題(1) 已解 ( 0:10am 20100621 )
問題(2) 已解 ( 0:39am 20100621 )
(1) Let M be a complex n*n matrix.
(a) All of the eigenvalues of the Hermitian part of M are positive.
( Hermitian part of M = (M+M^{\dagger}) / 2 )
(b) All of the real part of eigenvalues of M are positive.
請問(a)和(b) 有存在任何的 sufficient or necessary conditions 嗎?
Ans:
(a) => (b). However, (b) can not imply (a).
(a)=>(b)
Decompose M into the form M = H + A,
where H is the hermitian part of M while A is its anti-hermitian part.
If the hermitian part of M is positive definitie,
it can be shown that ,for any given vector z with its conjugate denoted
by z*,
Re( z* M z )
= Re( z* H z + z* A z )
= Re( ci* xi* H cj xj + di* yi* A dj yj )
= Re( ci* xi* H cj xj )
> 0
where z = ci xi = di yi.
xi and yi are eigenvectors of H and A, respectively.
Therefore,
for any eigenvector z of M with the norm ||z||=1,
the real part of eigenvalue corresponding to z is
Re(z* M z) > 0.
(b) can not imply (a):
example
[ -1 3I/2 ]
Let M = [ 3I/2 2 ]
I : imaginary number
The eigenvalues are positive, but the hermitian part is not positive definite.
(2) For a Gaussian integral with multiple complex variable xi* and xi
, where i = 1, ....,n,
the integral turns out to be 1 / det M
if the exponent of the integrand is - xi* Mij xj,
and "the Hermitian part" of M is positive definite.
( Here, I have used the Einstein summation convention )
proof:
If M is positive definitive Hermitian, the proof is easy.
The problem is what it becomes if M is not hermitian.
Let M = H + A as I did in the problem (1).
If H is positive definite, the integral converges as the antihermitian
part only contributes the oscillation.
Therefore, the result 1/detM can be analytically continuated from the
real axis to the complex plane around the real axis where the integral
is convergent if H is positive definite.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 24.250.202.249
※ 編輯: chungweitw 來自: 24.250.202.249 (06/19 21:04)
推 xgcj:第二的你只要講矩陣對角化之後就出來了 06/19 21:28
推 sunev:第一的M是normal嗎? 06/19 21:31
→ chungweitw:第二個不是對角化就出來 06/19 22:19
→ chungweitw:第一個M 不是normal...就任意矩陣. 不過, 如果是normal 06/19 22:20
→ chungweitw:的話, 就會等價嗎? 06/19 22:20
→ chungweitw:再補充第二個...M 不是 Hermitian matrix 06/19 22:21
→ chungweitw:所以似乎不是那麼顯然 06/19 22:22
→ xgcj:原PO可以跟我們講講對解第二題的看法嗎?我想知道你的想法~ 06/19 22:57
→ chungweitw:老實說, 想不出來. 06/20 01:26
→ xgcj:如果可以對角話答案就很明顯了~如果不行對角化(我猜答案是無 06/20 01:32
→ xgcj:限大) 06/20 01:33
→ chungweitw:M 可以對角化. 但是 Jacobian 怎麼辦? 06/20 01:38
→ chungweitw:M 不是Hermitian.. 06/20 01:38
→ chungweitw:一般書上都直接拿 M is hermitian 來證明. 06/20 01:39
→ chungweitw:然後有些書在以M is hermitian 證完之後, 說其實只要 06/20 01:40
→ chungweitw:Hermitian part is positive definite 就可以. 但是沒 06/20 01:41
→ chungweitw:有證明. 06/20 01:41
推 xgcj:第二題的答案應該是π^0.5*(detM)^(-0.5) 06/20 02:21
→ xgcj:更正 是π^0.5n*(detM)^(-0.5) (n是vector的dim) 06/20 02:24
→ xgcj:你題目有寫錯~(對角化矩陣的det就是Jacobian) 06/20 02:26
→ chungweitw:題目哪裡錯? 1/detM 該換成 1/detM^{.5} 嗎? 06/20 02:36
→ chungweitw:No. 應該是 1/detM 沒錯. 06/20 02:36
→ chungweitw:x* 和 x 共有 2n 個. 所以是 1/(detM^{.5})^2 =1/detM 06/20 02:37
推 youmehim:我這題目的答案也跟xgcj的一樣 有說M is hermitian 06/20 02:37
→ chungweitw:M 不需要是Hermitian. 就因為不需要, 我才來問的 06/20 02:38
→ chungweitw:只要求有positive Hermitian part 就可以了 06/20 02:38
→ youmehim:可是限定是hermitian答案應該也要一樣吧 XD 06/20 02:39
→ chungweitw:Hermitian 隨便一本書都有證明. 06/20 02:40
推 youmehim:所以這裡的Gaussian integral是積2n次嗎? 06/20 02:41
→ chungweitw:right...因為x* x 各有 n 個. 06/20 02:42
→ xgcj:這積分是在做路徑積分時會遇到的~ 06/20 02:42
→ chungweitw:dx* dx 定義為 du dv where x = u+iv 06/20 02:42
→ xgcj:難怪~跟我算的不一樣 06/20 03:03
※ 編輯: chungweitw 來自: 24.250.202.249 (06/21 00:10)
※ 編輯: chungweitw 來自: 24.250.202.249 (06/21 00:39)
※ 編輯: chungweitw 來自: 24.250.202.249 (06/21 00:43)
推 youmehim:這...只能推了 XD 06/21 01:14