看板 Physics 關於我們 聯絡資訊
更新: 問題(1) 已解 ( 0:10am 20100621 ) 問題(2) 已解 ( 0:39am 20100621 ) (1) Let M be a complex n*n matrix. (a) All of the eigenvalues of the Hermitian part of M are positive. ( Hermitian part of M = (M+M^{\dagger}) / 2 ) (b) All of the real part of eigenvalues of M are positive. 請問(a)和(b) 有存在任何的 sufficient or necessary conditions 嗎? Ans: (a) => (b). However, (b) can not imply (a). (a)=>(b) Decompose M into the form M = H + A, where H is the hermitian part of M while A is its anti-hermitian part. If the hermitian part of M is positive definitie, it can be shown that ,for any given vector z with its conjugate denoted by z*, Re( z* M z ) = Re( z* H z + z* A z ) = Re( ci* xi* H cj xj + di* yi* A dj yj ) = Re( ci* xi* H cj xj ) > 0 where z = ci xi = di yi. xi and yi are eigenvectors of H and A, respectively. Therefore, for any eigenvector z of M with the norm ||z||=1, the real part of eigenvalue corresponding to z is Re(z* M z) > 0. (b) can not imply (a): example [ -1 3I/2 ] Let M = [ 3I/2 2 ] I : imaginary number The eigenvalues are positive, but the hermitian part is not positive definite. (2) For a Gaussian integral with multiple complex variable xi* and xi , where i = 1, ....,n, the integral turns out to be 1 / det M if the exponent of the integrand is - xi* Mij xj, and "the Hermitian part" of M is positive definite. ( Here, I have used the Einstein summation convention ) proof: If M is positive definitive Hermitian, the proof is easy. The problem is what it becomes if M is not hermitian. Let M = H + A as I did in the problem (1). If H is positive definite, the integral converges as the antihermitian part only contributes the oscillation. Therefore, the result 1/detM can be analytically continuated from the real axis to the complex plane around the real axis where the integral is convergent if H is positive definite. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 24.250.202.249 ※ 編輯: chungweitw 來自: 24.250.202.249 (06/19 21:04)
xgcj:第二的你只要講矩陣對角化之後就出來了 06/19 21:28
sunev:第一的M是normal嗎? 06/19 21:31
chungweitw:第二個不是對角化就出來 06/19 22:19
chungweitw:第一個M 不是normal...就任意矩陣. 不過, 如果是normal 06/19 22:20
chungweitw:的話, 就會等價嗎? 06/19 22:20
chungweitw:再補充第二個...M 不是 Hermitian matrix 06/19 22:21
chungweitw:所以似乎不是那麼顯然 06/19 22:22
xgcj:原PO可以跟我們講講對解第二題的看法嗎?我想知道你的想法~ 06/19 22:57
chungweitw:老實說, 想不出來. 06/20 01:26
xgcj:如果可以對角話答案就很明顯了~如果不行對角化(我猜答案是無 06/20 01:32
xgcj:限大) 06/20 01:33
chungweitw:M 可以對角化. 但是 Jacobian 怎麼辦? 06/20 01:38
chungweitw:M 不是Hermitian.. 06/20 01:38
chungweitw:一般書上都直接拿 M is hermitian 來證明. 06/20 01:39
chungweitw:然後有些書在以M is hermitian 證完之後, 說其實只要 06/20 01:40
chungweitw:Hermitian part is positive definite 就可以. 但是沒 06/20 01:41
chungweitw:有證明. 06/20 01:41
xgcj:第二題的答案應該是π^0.5*(detM)^(-0.5) 06/20 02:21
xgcj:更正 是π^0.5n*(detM)^(-0.5) (n是vector的dim) 06/20 02:24
xgcj:你題目有寫錯~(對角化矩陣的det就是Jacobian) 06/20 02:26
chungweitw:題目哪裡錯? 1/detM 該換成 1/detM^{.5} 嗎? 06/20 02:36
chungweitw:No. 應該是 1/detM 沒錯. 06/20 02:36
chungweitw:x* 和 x 共有 2n 個. 所以是 1/(detM^{.5})^2 =1/detM 06/20 02:37
youmehim:我這題目的答案也跟xgcj的一樣 有說M is hermitian 06/20 02:37
chungweitw:M 不需要是Hermitian. 就因為不需要, 我才來問的 06/20 02:38
chungweitw:只要求有positive Hermitian part 就可以了 06/20 02:38
youmehim:可是限定是hermitian答案應該也要一樣吧 XD 06/20 02:39
chungweitw:Hermitian 隨便一本書都有證明. 06/20 02:40
youmehim:所以這裡的Gaussian integral是積2n次嗎? 06/20 02:41
chungweitw:right...因為x* x 各有 n 個. 06/20 02:42
xgcj:這積分是在做路徑積分時會遇到的~ 06/20 02:42
chungweitw:dx* dx 定義為 du dv where x = u+iv 06/20 02:42
xgcj:難怪~跟我算的不一樣 06/20 03:03
※ 編輯: chungweitw 來自: 24.250.202.249 (06/21 00:10) ※ 編輯: chungweitw 來自: 24.250.202.249 (06/21 00:39) ※ 編輯: chungweitw 來自: 24.250.202.249 (06/21 00:43)
youmehim:這...只能推了 XD 06/21 01:14
sneak: 第一的M是normal https://noxiv.com 08/13 15:40
sneak: 老實說, 想不出來. https://daxiv.com 09/17 10:22
sneak: Hermitian p https://daxiv.com 09/17 13:38
sneak: M 不需要是Hermi https://muxiv.com 11/09 11:24
sneak: 所以似乎不是那麼顯然 http://yofuk.com 01/02 14:27
muxiv: 你題目有寫錯~(對角化 https://moxox.com 07/06 22:10