作者silentforest (應該如此)
看板Physics
標題Re: [問題] 廣相中非歐幾何證明
時間Mon Oct 18 23:25:40 2010
※ 引述《silentforest (應該如此)》之銘言:
: ※ 引述《JohnMash (John)》之銘言:
: : 愛因斯坦是說
: : 我們如何知道 我們的世界是何種幾何
: : 方法如下
: : 用 d 個相同小剛尺 排出一個直徑
: : 再用 s 個相同小剛尺 排出(而不是去量)圓周
: : 則若 s/d=π 即為歐式
: : 否則為非歐
: : 接著
: : 我們已經知道 在慣性系中
: : s/d=π
: : 那麼 在等速率圓運動的座標系K'中 會是多少?
: : 首先
: : 你把 兩個座標系 重疊在一起
: : 冖넊: : 在座標系K'中 排出直徑 仍然是用 d 個相同小剛尺
: : 但在排圓周時
: : 因為 小剛尺較短 (相較於慣性系中圓周上的小剛尺) 是用 s' 個相同小剛尺
: 越弄越糊塗了 其實想證明非歐幾何 是不是就有點像在地球上以赤道為圓心 然後
: 比方說在北緯23.5度劃一圓 然後此時 周長/半徑就會小於π
: 或是走個三角形 此時內角合會大於180度
: 如此就可證明 此時空間是彎曲的 不適用歐式幾何
: 至於愛因斯坦的例子,需證明k'系不適用歐式幾何,
: 但是他無法利用明顯之幾何關係直接證,所以他借助靜止不動之k系與k'之關係證明
: 接下來我還得想想....
: : [這句話需要想清楚
: : 其實在K'中 他用的都是相同的小剛尺]
: : 因此 必然有
: : s'>s
: : 所以
: : s'/d > s/d =π
有個初步的問題想釐清一下
請教一下 我們都知道在狹相中
與觀察者作等速率直線運動的物體其在與速度平行方向的地方會收縮
所以說假如該物體為正方形,其相對於一觀察者o已一速度沿x軸等速度運動,
那麼該物體在觀察者o看起來就是一長方體 此部分應該沒有問題
那假設有一觀察者o'在一座標軸之原點,而有一個圓盤相對於原點作等速率圓周運動
那麼此原盤在這觀察者o'看起來會是什麼樣子呢?此時狹義相對論還適用嗎?
若還適用的話,那麼該圓盤的周長半徑比就是小於pi的嗎?
且因為為等速率圓周運動,所以越接近圓盤外沿其速度越快,所以其週長半徑比會越小
如此該圖形就有圓週率隨距圓心距離遞減之關係
(就類似地球上,以北極為圓心,越接近赤道,其圓周半徑比越小)
還是說在此等速率圓周運動情形下,只有在盤上以每個非常微小的區域來看才適用狹相
若以整個盤來看,就不適用了?以上還請解惑.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 60.251.144.196
→ XmasX:第三不清楚 但第四是對的 圓周運動不適用慣性座標 要用廣相 10/19 04:54
推 JohnMash:我補充了我的文章 10/19 11:47
→ condensed:這裡若沒考慮質量引起的時空彎曲,廣相是用不到的 10/24 12:59