看板 Physics 關於我們 聯絡資訊
使用cylindrical coordinate Gauss's Law (Integrate form) : ∮E‧dA = Qenc/ε0 ; Qenc: 高斯面內所包之電荷量 在圓柱外之電場: (選定圓柱中心為z軸) 高斯面選取為z軸往外s、高度為L的圓柱 由於此問題之電場於z方向上必定為零 並且本題目具有azimuthal symmetry 所以在電場在s處必定為定值 且方向必定平行於所選定之高斯面之面積法向量 所以: ∮E‧dA = E ×2πsL = ρ×π(R^2)L/ε => E = ρ(R^2)/2εs ; 其方向為e_s dV = E‧dl => △V = ∫E‧dl ; in this case: dl = (ds)e_s => △V = ∫Eds = ρ(R^2)/2ε ∫ds/s = ρ(R^2)/2ε ln(s2/s1) 接下來就自己代入吧 ※ 引述《ComeonLuLuLu (盧彥勳加油)》之銘言: : 電學 : 給定體電荷密度 求某兩點之電位差 : Charge of uniform density 90 nC/m3 is distributed throughout the inside of a : long nonconducting cylindrical rod (radius = 2.0 cm). Determine the magnitude : of the potential difference of point A (2.0 cm from the axis of the rod) and : point B (4.0 cm from the axis). : 一個長圓柱 圓柱面上的某點 與 該點外兩公分之一點 求電位差 : 線電位差 就已經很難積了 : 體電位差 要怎算啊 還有角度的.... -- I am the bone of my paper. Pen is my body, and ink is my blood. I have finished over a thousand assignments. Unknown to pass. Nor known to fail. Have withstood pain to take many midterms. Yet, those hands will never write anything. So as I pray, Unlimited homeworks. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.115.220.100
ntust661:推@@ 03/30 23:10
※ 編輯: nightkid 來自: 140.115.220.100 (03/30 23:11) ※ 編輯: nightkid 來自: 140.115.220.100 (03/30 23:14)
HDT:推 03/30 23:20
windygod:推 倒 03/31 19:06
hank780420:推無限的作業製...... 03/31 19:14