作者JohnMash (Paul)
看板Physics
標題Re: [問題] Legendre Polynomial
時間Tue Apr 26 07:28:05 2011
※ 引述《ren1072 (小朱)》之銘言:
: 今天考線代,老師出了一題
: d 2 d
: --((X-1)--P (x))=n(n+1)P (x)
: dX dX n n
: +1
: 但是,題目後頭要我們要證明∫ P P dx=0 , n≠m
: -1 n m
Denote x^2-1=K, P_n=N, P_m=M
then
(KN')'=n(n+1)N
(KM')'=m(m+1)M
M(KN')'-N(KM')'=[n(n+1)-m(m+1)]NM.....(1)
but
(KMN'-KM'N)'=M(KN')'+KM'N'-N(KM')'-KM'N'=M(KN')'-N(KM')'......(2)
by (2)
∫_{-1}^1 (KMN'-KM'N)' dx = 0 [∵K(1)=K(-1)=0]............(3)
by (1) (2) and (3), Done
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 112.104.96.30
※ 編輯: JohnMash 來自: 112.104.96.30 (04/26 07:31)
推 Keelungman:Cool! 很清爽的解法 04/26 09:28
推 zealeliot:推~ 04/26 12:20
→ sukeda:cool~ 04/26 13:56
推 condensed:PUSH 04/26 14:15
推 xgcj:well done 04/26 14:16
推 xgcj:好方法再推一次 04/26 14:50
推 ren1072:好厲害!!推~ 04/26 15:55
→ ren1072:請問原PO可以轉錄嗎?? 04/26 15:55
You are welcome.
※ 編輯: JohnMash 來自: 112.104.144.227 (04/26 16:49)
推 ren1072:感恩~再推一次 04/26 16:52