※ 引述《legenthume (沒有腳毛生不如死)》之銘言:
: [領域] (題目相關領域)
: 電磁學
: [來源] (課本習題、考古題、參考書...)
: [題目]
: suppose LaplacianV=0 in a space region # bounded by the closed surface S
: (a) If the normal derivative
: V對n偏微分=gradientV對n內積
: is specied for every point on S, show that V is determined up to a constant
: everywhere in #.
: (b) 10% If the value of V is specied on the portion S1 of the surface S, and
: the normal
: derivative is specied on the rest of S, show that V is unique in #.
: (Hint: Make use of the Green's theorem)
: [瓶頸] (寫寫自己的想法,方便大家為你解答)
先推導Green's first identity
φ1、φ2為任意的位置函數
2
已知▽.(φ1▽φ2) = φ1*▽φ2 + ▽φ1.▽φ2
2 3
故∫(φ1*▽φ2 + ▽φ1.▽φ2)d x = ∮φ1*(δφ2/δn) da ←由divergence 定理
V S
上式即Green's first identity
假定本題中,surface S 內的電位有兩解:V1及V2
現令 U =V1-V2
將U =φ1=φ2代入Green's first identity,得:
2 3
∫(U*▽ U + ▽U.▽U)d x = ∮U*(δU/δn) da
V S
2 2 2
由本題條件,▽ V1 = ▽ V2 = 0 , 故▽ U = 0
3
∴ ∫|▽U|^2 d x = ∮U*(δU/δn) da
V S
Ⅰ、當邊界S上的δV/δn給定時,δU/δn = 0 on S
3
∫|▽U|^2 d x = 0 => V1-V2 為constant
V
V1和V2差一個常數(即(a)題所述"V is determined up to a constant."),故為同一解
Ⅱ、當邊界S上的V給定時,U = 0 on S
同樣,
3
∫|▽U|^2 d x = 0 => V1-V2 = 0 (滿足boundary)
V
V1、V2為同一解
由Ⅰ、Ⅱ,(b)小題得證
--
/ ̄ ̄ ̄ ㄟ | |
/ ㄟ | |
| (> )( <) < XD |
| /// (_人_) | |
| \__/ ! | |
| ㄟ \____|
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.102.167