看板 Physics 關於我們 聯絡資訊
※ 引述《legenthume (沒有腳毛生不如死)》之銘言: : [領域] (題目相關領域) : 電磁學 : [來源] (課本習題、考古題、參考書...) : [題目] : suppose LaplacianV=0 in a space region # bounded by the closed surface S : (a) If the normal derivative : V對n偏微分=gradientV對n內積 : is specied for every point on S, show that V is determined up to a constant : everywhere in #. : (b) 10% If the value of V is specied on the portion S1 of the surface S, and : the normal : derivative is specied on the rest of S, show that V is unique in #. : (Hint: Make use of the Green's theorem) : [瓶頸] (寫寫自己的想法,方便大家為你解答) 先推導Green's first identity φ1、φ2為任意的位置函數 2 已知▽.(φ1▽φ2) = φ1*▽φ2 + ▽φ1.▽φ2 2 3 故∫(φ1*▽φ2 + ▽φ1.▽φ2)d x = ∮φ1*(δφ2/δn) da ←由divergence 定理 V S 上式即Green's first identity 假定本題中,surface S 內的電位有兩解:V1及V2 現令 U =V1-V2 將U =φ1=φ2代入Green's first identity,得: 2 3 ∫(U*▽ U + ▽U.▽U)d x = ∮U*(δU/δn) da V S 2 2 2 由本題條件,▽ V1 = ▽ V2 = 0 , 故▽ U = 0 3 ∴ ∫|▽U|^2 d x = ∮U*(δU/δn) da V S Ⅰ、當邊界S上的δV/δn給定時,δU/δn = 0 on S 3 ∫|▽U|^2 d x = 0 => V1-V2 為constant V V1和V2差一個常數(即(a)題所述"V is determined up to a constant."),故為同一解 Ⅱ、當邊界S上的V給定時,U = 0 on S 同樣, 3 ∫|▽U|^2 d x = 0 => V1-V2 = 0 (滿足boundary) V V1、V2為同一解 由Ⅰ、Ⅱ,(b)小題得證 --               / ̄ ̄ ̄ ㄟ |   |            /     ㄟ |    |               |   (> )( <) < XD  |             | /// (_人_) |    |            |    \__/ ! |    |             |      ㄟ \____| -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.102.167