看板 Physics 關於我們 聯絡資訊
※ [本文轉錄自 Math 看板 #1EY0qaSc ] 作者 pandajohn (貓熊醬) 看板 Math 標題 [工數] 對三度空間向量做全微分之證明 時間 Sun Oct 2 14:20:27 2011 ─────────────────────────────────────── 1 若Φ(x,y,z)= -------- 則: PS.(r與R為位置向量 ) |r一R| 2 ▽。(▽Φ)=▽ Φ= 一4πσ(r一R) PS.σ:delta函數 請問,該如何證明? Your problem is the special case of the following general problem. ※ 引述《JohnMash (Paul)》之銘言: ※ 引述《deepwoody (快回火星吧)》之銘言: : 2 2 : -D▽ φ(r) + K Dφ(r) = Qδ(r) - ▽^2 φ + K^2 φ = 0 whenever r≠0 and ▽^2 φ = (1/r)(d^2/dr^2) (rφ) + ... (d^2/dr^2) (rφ) + K^2 (rφ) = 0 rφ= u = a cos(Kr) + b sin(Kr) when r≠0 ▽= e_r (d/dr) + e_θ(1/r)(d/dθ) + e_φ(1/r sinθ)(d/dφ) ▽φ= e_r (-u/r^2 + u'/r) and -∮_Ω ▽ φ(r)‧dA + K^2 ∫_V φ(r) dV = Q/D when the origin in V = 0 when the origin not in V Take V a infinitesimal ball with the center origin ^^^^^^^^^^^^^ -∮_Ω ▽ φ(r)‧dA = -4πa K^2 ∫_V φ(r) dV =0 hence, a=-Q/(4πD), b CAN BE ANY ARBITRARY CONSTANT ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ φ = - Q [cos(Kr) + b sin(Kr)] / (4πDr) But, sometimes, we need a spherical wave solution, φ = - Q e^{iKr} / (4πDr) ps. I repost it just because it is a good question to me. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.104.115.90 ※ 編輯: JohnMash 來自: 112.104.129.8 (11/24 23:49)