推 Lanjaja:謝謝你的回答 03/25 10:42
※ 引述《Lanjaja ()》之銘言:
: 大家好,最近在計算計算統計力學的相變問題,
: 課本推導中有用到很奇妙的橢圓積分elliptic integral
: 但是算到一半就卡住了,不知道其中一條關係式怎麼得到的,
: 我的問題整理如下
: K(k)是complete elliptic integral of the first kind, 定義如下
: π/2 dθ
: K(x) = ∫ ------------------------- 0 ≦ x^2 < 1
: 0 √[1- (x^2)*(sinθ)^2]
: E(x)是complete elliptic integral of the second kind, 定義如下
: π/2
: E(x) = ∫√[1- (x^2)*(sinθ)^2] dθ 0 ≦ x^2 < 1
: 0
: 試證
: 1
: dK/dx = -----------[E(x) - (1-x^2)K(x)]
: (1-x^2)x
改寫:
欲證
(1-x^2)x(dK/dx) = E(x) - (1-x^2)K(x)
=> (1-x^2)(d(xK)/dx) = E(x)
=> d(xK)/dx - E(x) = (x^2)(d(xK)/dx)
d(xK)/dx = K + ∫(x^2)*(sinθ)^2/[1- (x^2)*(sinθ)^2]^(3/2) dθ
E = ∫[1- (x^2)*(sinθ)^2]/√[1- (x^2)*(sinθ)^2] dθ
= K - ∫ (x^2)*(sinθ)^2/√[1- (x^2)*(sinθ)^2] dθ
d(xK)/dx - E = 一大串積分
嘗試湊出 (x^2)(d(xK)/dx)
得到
d(xK)/dx - E = (x^2)(d(xK)/dx) - (x^2)I(x)
(x^2)(sinθ)^4 - 2(sinθ)^2 + 1
I(x) = ∫ ---------------------------------- dθ
[1- (x^2)*(sinθ)^2]^(3/2)
sin(2θ)
= ------------------------------- (我用mathematica = =)
√(4-2x^2 +2(x^2)cos(2θ) )
= 0
得證
d(xK)/dx - E = (x^2)(d(xK)/dx)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 99.116.95.250
※ 編輯: caseypie 來自: 99.116.95.250 (03/24 14:45)