看板 Prob_Solve 關於我們 聯絡資訊
let A and B be two computational problems. If we can find a linear time algorithm to transform A to B, i.e., the inputs to A is transform to the inputs to B and the solution to B is transform A, both can be done in O(n) time. (1) we can say that A is at least as hard as B (2) we can solve B by solving A (3) if the least possible computing time required(or the lower bound) for solving A is Ω(nlogn), B also has Ω(nlogn) lower bound 請問上面這三點哪些是對的? A reduce to B 這樣是B比較難 這題這樣寫是哪個比較難? 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.228.27.178
Favonia:hard的精確定義仰賴reduce的精確定義。然後你是用TM嗎? 07/29 20:32
Favonia:我的意思是說,允許的reduction恰好是所有O(n)時間演算法? 07/29 20:34
mqazz1:這個是研究所的考題 我想可能是比較通俗的定義吧@@? 07/29 20:40
shiuantzuo:都不對... 07/30 16:29
jfurseteidce:(1)A轉成B問題 所以B比A難 (2)藉由解B可以解A 08/11 03:01
Arim:第1點應該是要說B至少跟A一樣難 第二點是由A解B 08/27 15:47
Arim:是錯的~應該是要由B解A 08/27 15:48
Arim:可以去看計算理論的書~應該比一般演算法的書解釋的清楚吧 08/27 15:49