看板 Statistics 關於我們 聯絡資訊
※ 引述《taldy ()》之銘言: : A random variable X is said to have a lognormal distribution,if the logarithm : of X has a normal distribution.Let X1,X2,...,Xn be iid lognormal random : variables ,thus Yi=lnXi ~N(μ,σ^2).Use invariance principle of maximum : likelihood estimation to find the MLE of E(Xi) and Var(Xi). : 有誰知道怎麼解的,回答一下..thx Y~N(μ,σ^2) so 1 1 f(y)= ---------- exp [- -------(y-μy)^2] √2πσy 2σy^2 Y=lnX 1 1 1 f(x)= ---------- exp [- ------(lnx-μy)^2] --- √2πσy 2σy^2 x let μy=lnx0 σy=ω 1 1 x f(x)= ---------- exp {- ------[ln(---)]^2} √2πω x 2ω^2 x0 應該可以從這方面去推出來吧.. 因為我也是最近才看到這個..所以不太懂..希望對你有幫助..XD -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.169.85.136
mangogogo:invariance principle of MLE 這才是重點 10/19 17:02