看板 Statistics 關於我們 聯絡資訊
※ 引述《hattori (hattori)》之銘言: : 我現在已經被f(x). f(x|p)搞混了 f(x)為一般的分配函數 f(x|p)為某種限定條件p底下的分配函數 : 例如在第6版600題的154題 : 一般病人對某種藥物反應良好的機率為P,且P為隨機變數,其機率分配函數為 : f(p)=12P^2(1-p), 0≦P≦1 : 今若有n個病人被注射此藥物,令X表示反應良好之人數 : 試問X之機率分配為何??? : 答案的第一步: : f(X|P)=(n取x)P^x(1-P)^n-x : 為什麼不是f(X)而是 f(X|P)??? f(x)是指病人反應良好的所有情況,不一定與藥物有關,可能是自體復元或其它治療 f(x|p)是指病人反應良好且是在注射藥物後才良好的限定條件狀況下 : 還有第186題 : 這題說X表示進入該商店n個客戶中會購買襯衫之人數,則 : f(x|n)=(n取x)p^x(1-p)^n-x 這是指在n個樣本的條件下 : 然後189題的題目 : 假設每小時進入益智性電玩人數Y服從普瓦松分配,即 : f(y|λ)=.......(就一般的普瓦松分配形式) : 只是這裡為什麼不是f(Y)呢??? 這是指在某個λ值的情況下,而不同之λ值會有不同的分配 : 還有個小問題... : P(X|Y ) 和 f(X,Y) : 的不同??是不是一個是機率一個是分配壓??? 前者為條件機率值,後者為機率之聯合分配 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.86.35.31
william2001:我的建議是去看陸思明寫的(機率下),那一本用很簡單 11/16 23:26
william2001:的道理說明條件機率而不像大學教科書直接跳到數理。 11/16 23:27