看板 Statistics 關於我們 聯絡資訊
※ 引述《JimCroce (我要下五子棋 ￾N￾ )》之銘言: : ※ 引述《H0NEYCAT ()》之銘言: : : Let Sn have a Chi-square distribution. Show that the : : limiting distribution of √Sn - √n is N(0,1/2). : : This is known as Fisher's approximation. : : 拜託了 : E(Sn)=n Var(Sn)=2n : by CLT 可知 : d : (Sn - n) ---> N(0,2n) 收斂到一個還包含有n的東西, 有點怪. by CTL (Not trivival) n^(-0.5)(Sn-n)--->N(0,2) (in distribution) n^(0.5)(Sn/n-1)--->N(0,2) (in distribution) 令g(x)=√x g在1連續 by delta method n^(0.5)(g(Sn/n)-g(1))--->N(0,(g'(1))^2*2) (in distribution) 所以√Sn - √n--->N(0,1/2) (in distribution) : by Cramer-δ theorem 令g(x)= √x , 且 在 x=n 連續 : d : (√Sn - √n) --->g'(n) N(0,2n)≡N(0,1/2) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.224.79.249
jackdan:強者~ 01/22 16:57
JimCroce:THX!!!寫太快了 01/22 17:19
JimCroce:沒注意到....= = 01/22 17:20
JimCroce:答案應該是N(0,1/2) ^^ 01/22 17:22
Jordan23:THX!!!寫太快了 沒注意到....= = ※ 編輯: Jordan23 來自: 61.224.79.249 (01/22 21:07)