看板 Statistics 關於我們 聯絡資訊
let X1,X2,...,Xn be a random sample from the uniformly distrubution. f(x)=1/θ θ<x<2θ , θ>0. Show that (1/2)Y1+(1/4)Yn is one mle of θ , where Y1,Y2,...Yn represent the order statistics of the random sample. 這是我們的做法 1 likelihood function is L(θ)=-----I[(1/2)Yn,Y1](θ) where I is indictor θ^n function. 明顯的 L(θ)為一個θ遞減函數 ,for all θ>0. 所以θ的mle為Yn 難以想像 為何(1/2)Y1+(1/4)Yn is one mle of θ ?? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.120.6.242
breadevil:mle不變性? 03/28 20:35