看板 Statistics 關於我們 聯絡資訊
1.let X be random variable with probability mass function n r n-r P(X=r) = ( )p (1-p) , if r = 0,1,2,..,n. 0≦p≦1. r Find the pmfs of the random variables (a) Y=X^2 , and (b) Y=√X 2.show that E(Y-Φ(X))^2 is minimized by choosing Φ(X)=E(Y|X). 3.Let {An} be a sequence of events such that An → A as n→∞. Show that P(An)→P(A) as n→∞ 1.我是寫 X=Y^2 => Y = √X n √r n-√r P (r) = P (√r) = ( )p (1-p) , for r = 0 , 1 , 4 , ... , n^2 Y X √r X=√Y => Y = X^2 n r^2 n-r^2 P (r) = P (r^2) = ( )p (1-p) , for r = 0 , 1 , 2 , √3 , ... , √n Y X r^2 有那麼簡單嗎?總覺得怪怪的@@"" 2.好像是迴歸線的性質?直接算 E(Y-E(Y|X))^2 還有些頭緒 但從E(Y-Φ(X))^2要變出 E(Y|X)真的弄不出來耶@@"" 3.我對於這種看似理所當然的命題都不會證耶@@""是因為沒修過高微的關係嗎? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.117.67.169
ym7226:1.不對喔再看看 2.展開看看 3.機率論最前面的東西吧 11/22 01:07
TOOYA:1 你為什麼前面ab小題互換 後面又換回來?? 11/22 06:27
TOOYA:2 減一項加一項E(Y|X)之後展開 中間項取E(.)=E(E(.|X))即可 11/22 06:36
TOOYA:3 Bn=(A-An)∪(An-A) Bn->ψ as n→∞ imply what u want 11/22 06:40
goshagainfuc:感謝 我再試看看 囧 11/22 18:22