題目(大略)
Let X1,X2...Xn be iid with f(x;θ)=exp(-(x-θ)),x>θ
Find a level α MP-test for Ho:θ=θo vs Ha:θ=θ1
(Using Neymann-Pearson Lemma)
Sol:
f(x1,x2...xn;θ)=exp(nθ-Σxi)I(x(1)>θ), where x(1)=min{x1,x2..xn}
設λ(x1,x2..xn;θo,θ1)=f(x1,x2...xn;θa)/f(x1,x2...xn;θo)
I(x(1)>θ1)
=exp(n(θ1-θo))˙------------- (= ┌ exp(n(θ1-θo)), if x(1)>θ1 )
I(x(1)>θo) └0 , if θ1>x(1)>θo
目前解到這裡,卡在不曉得怎麼看這個比
請問接下來該怎麼做??
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 125.229.137.83