看板 Statistics 關於我們 聯絡資訊
※ 引述《bigioboe (每天都想吃宵夜)》之銘言: : 1. Suppose(X,Y) has joint probability density function : _____ : f(x,y)=(1/√2πσ)*exp[-X^2/(2σ^2+x-y)]*I_(x≦y) : where σ>0 and I_(x≦y) equals 1 if x≦y and 0 otherwise. : 請問Y,X分別的pdf為何?(積不出來><) 確定題目是這樣? 由任意固定的x, y→∞, f(x,y)→1/√(2πσ), 就感覺到積分會暴掉了. : 2. Suppose X is uniformly distributed on {-1,1} and Z has probability : density function : f_z(z)=σ^(-1) exp(-z/σ)I_(x≧0), where σ>0 and I_(x≧0) equals 1 if ^^^ ^^^ 是z吧? : z≧0 and 0 otherwise. : For an odd n, let Y1,...Yn be a random sample on Y=XZ+μ, where -∞<μ<∞. : 試問Y的分配為何? 題目有點怪? 若要問Y(=XZ+μ)的分配, 何必給n為奇數, 又何必給Y1,...,Yn? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.139.132.234
LiamIssac:有可能是說Y1...Y(2n+1) 有奇數個RS 02/16 14:32