看板 Statistics 關於我們 聯絡資訊
Suppose we have two independent observations X1~N(μ1, σ1^2) X2~N(μ2, σ2^2) where σ1, σ2 are known, and μ1, μ2 are independent. Suppose prior densities for μ1, μ2 are μ1~N(v1, υ1^2) μ2~N(v2, υ2^2) where v1, υ1^2, v2, υ2^2 are known. Find Bayes estimators for μ1, μ2 subject to the quadratic loss function L(μ1*, μ2*)=(μ1*-μ1)^2 + (μ2*-μ2)^2 ==== 書上有這樣的範例推導 If X1, X2,... Xn iid ~N(μ, σ^2) where σ^2 is known and μ~N(v, υ^2) then Bayes estimator for μ is _ nX v -- + -- σ^2 υ^2 ------------ n 1 -- + -- σ^2 υ^2 我現在很疑惑, 因為 L 看起來像是兩個獨立的平方和, 不知道本題跟書上範例差在哪裡? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 70.54.1.217
ddiigg:可不可以請教一下是哪一本書有提到呢? 04/19 17:43