看板 Statistics 關於我們 聯絡資訊
※ 引述《yhliu.bbs@bbs.wretch.cc (老怪物)》之銘言: : ※ 引述《buttermilk.bbs@ptt.cc (脫脂牛奶)》之銘言: : > Let (σ_1)^2 = (σ_2)^2 = σ^2 be the common variance of X_1 and X_2 and : > let p be the correlation coefficient of X_1 and X_2. Show that : ^^ρ, not p. Thanks for your correction. : > P[│(X_1-μ_1) + (X_2-μ_2)│≧kσ]≦2(1+ρ)/k^2. : Hint: Var(X_1+X_2) = ? : > ------------------------------------------------------------------------- : > 我覺得應該是要利用Chebyshev's Inequality來做 : > 不過我就是不會寫=.= Thanks for your hint:) Var(X_1+X_2) = Var(X_1) + Var(X_2) + 2 Cov(X_1,X_2) ( 我當初就是少了黃色這一項才算不出來 =.= ) = 2σ^2 + 2σ^2ρ = 2σ^2(1+ρ) E(X_1+X_2) = E(X_1) + E(X_2) = μ_1 + μ_2 Let Y = X_1 + X_2. Then (σ_Y)^2 = 2σ^2(1+ρ). By Chebyshev's Inequality, P[│(X_1-μ_1) + (X_2-μ_2)│≧kσ]≦2(1+ρ)/k^2. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 203.64.26.246 ※ 編輯: buttermilk 來自: 203.64.26.246 (04/20 13:31)