※ 引述《yhliu.bbs@bbs.wretch.cc (老怪物)》之銘言:
: ※ 引述《buttermilk.bbs@ptt.cc (脫脂牛奶)》之銘言:
: > Let (σ_1)^2 = (σ_2)^2 = σ^2 be the common variance of X_1 and X_2 and
: > let p be the correlation coefficient of X_1 and X_2. Show that
: ^^ρ, not p.
Thanks for your correction.
: > P[│(X_1-μ_1) + (X_2-μ_2)│≧kσ]≦2(1+ρ)/k^2.
: Hint: Var(X_1+X_2) = ?
: > -------------------------------------------------------------------------
: > 我覺得應該是要利用Chebyshev's Inequality來做
: > 不過我就是不會寫=.=
Thanks for your hint:)
Var(X_1+X_2) = Var(X_1) + Var(X_2) + 2 Cov(X_1,X_2)
( 我當初就是少了黃色這一項才算不出來 =.= )
= 2σ^2 + 2σ^2ρ
= 2σ^2(1+ρ)
E(X_1+X_2) = E(X_1) + E(X_2) = μ_1 + μ_2
Let Y = X_1 + X_2.
Then (σ_Y)^2 = 2σ^2(1+ρ).
By Chebyshev's Inequality, P[│(X_1-μ_1) + (X_2-μ_2)│≧kσ]≦2(1+ρ)/k^2.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 203.64.26.246
※ 編輯: buttermilk 來自: 203.64.26.246 (04/20 13:31)