Let {X_n} be a sequence of random variables bounded in probability and
let {Y_n} be a sequence of random variables which converge to 0
P
in probability. Then X_nY_n ------> 0.
Proof:
Letε> 0 be given. Choose B_ε> 0 and an integer N_ε such that
n≧N_ε => P[∣X_n∣≦B_ε]≧1-ε.
Then,
--- ---
lim P[|X_nY_n|≧ε]≦ lim P[|X_nY_n|≧ε,∣X_n∣≦B_ε]
n→∞ n→∞
---
+ lim P[|X_nY_n|≧ε,∣X_n∣>B_ε]
n→∞
---
< lim P[|Y_n|≧ε/B_ε] + ε = ε
n→∞
From which the desired result follows.
------------------------------------------------------------------------
從 Then 後面的式子就看不懂了。
另外,
---
為什麼它是取 lim 而不是取 lim ,機率收斂的定義不是要用 lim 嗎?
n→∞ n→∞ n→∞
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 203.64.26.246