看板 Statistics 關於我們 聯絡資訊
Let {X_n} be a sequence of random variables bounded in probability and let {Y_n} be a sequence of random variables which converge to 0 P in probability. Then X_nY_n ------> 0. Proof: Letε> 0 be given. Choose B_ε> 0 and an integer N_ε such that n≧N_ε => P[∣X_n∣≦B_ε]≧1-ε. Then, --- --- lim P[|X_nY_n|≧ε]≦ lim P[|X_nY_n|≧ε,∣X_n∣≦B_ε] n→∞ n→∞ --- + lim P[|X_nY_n|≧ε,∣X_n∣>B_ε] n→∞ --- < lim P[|Y_n|≧ε/B_ε] + ε = ε n→∞ From which the desired result follows. ------------------------------------------------------------------------ 從 Then 後面的式子就看不懂了。 另外, --- 為什麼它是取 lim 而不是取 lim ,機率收斂的定義不是要用 lim 嗎? n→∞ n→∞ n→∞ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 203.64.26.246