看板 Statistics 關於我們 聯絡資訊
P P P Suppose X_n ----> X and Y_n ----> Y. Then X_n + Y_n ----> X + Y. Proof: Letε>0 be given. Using the triangle inequality, we can write │X_n - X│+ │Y_n - Y│≧│(X_n + Y_n) - (X + Y)│≧ε. Since P is monotone relative to set containment, we have P[∣(X_n + Y_n) - (X + Y)│≧ε] ≦ P[│X_n - X│+ │Y_n - Y│≧ε] P[│X_n - X│≧ε/2] + P[│Y_n - Y│≧ε/2] By the hypothesis of the thoerem, the last two terms converge to 0 which gives us the desired result. ------------------------------------------------------------------------ 請問Since P is monotone relative to set containment是什麼意思? 又,我不瞭解黃色不等式為什麼成立。(我猜測可能是用集合的範圍。) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 203.64.26.246