看板 Statistics 關於我們 聯絡資訊
※ 引述《imgodya (許我一個PhD)》之銘言: : Find E{R^2/(1-R^2)} under the null hypothesis, where R^2 is the sample squared : multiple correlation coefficient. Hint: E{[χ^2]^k} = 2^kΓ(v/2 + k)/Γ(v/2), : whereχ^2 is aχ^2-distributed random variable with v degrees of freedom. : 翻了很多書 不太懂這個問題的定理 : 想請問要如何推導?? Under the null hypothesis, R^2 R^2 *SST SSR SSR/ σ^2  ------- = -------------- = ------- = ------------ 1-R^2 (1-R^2) *SST SSE SSE/ σ^2 (k-1 is the number of explanatory variables) Since SSR/ σ^2 and SSE/ σ^2 are inpependent χ^2-distributed random variable with degrees of freedom k-1 and n-k respectively under null hypothesis. R^2 SSR/ σ^2  1 E(-------) = E(-----------) = E( SSR/ σ^2 * ------------) 1-R^2 SSE/ σ^2 SSE/ σ^2 1 =E( SSR/ σ^2 )* E ( ------------) SSE/ σ^2 Compute these expectations with the hint E{[χ^2]^k} = 2^kΓ(v/2 + k)/Γ(v/2) SSR/ σ^2 ~ χ^2(k-1) E(SSR/ σ^2)= k-1 SSE/ σ^2 ~ χ^2(n-k) 1 E ( --------- ) = 2^(-1)Γ( (n-k)/2 -1 )/Γ( (n-k)/2 ) SSE/ σ^2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 203.73.183.95 ※ 編輯: jangwei 來自: 203.73.183.95 (02/23 01:04)
goshfju:還蠻詳細的 02/23 03:01
imgodya:感謝J大 實在是"就甘心"的 02/23 11:10