看板 Statistics 關於我們 聯絡資訊
------------------------------------------------------------------------ [軟體程式類別]: sas [程式問題]: cox proportional hazards 資料處理 [軟體熟悉度]: 高(1年以上) [問題敘述]: 目的是根據不同的treatment( trt ) 來做PHREG 然後在同一張圖上畫出兩條 LOG-LOG survival curve 請問有沒有辦法不用 WHERE 這個指令 因為這樣不同的trt必須分開做 然後在用SET把資料彙整 請問有別的指令可以用嗎? [程式範例]: DATA r; INPUT group weeks status wbc sex@@; trt=group-1; IF wbc<2.3 THEN lmh=1; ELSE IF wbc>3 THEN lmh=3; ELSE lmh=2; CARDS; 1 6 1 2.31 0 1 6 1 4.06 1 1 6 1 3.28 0 1 7 1 4.43 0 1 10 1 2.96 0 1 13 1 2.88 0 1 16 1 3.60 1 1 22 1 2.32 1 1 23 1 2.57 1 1 6 0 3.20 0 1 9 0 2.80 0 1 10 0 2.70 0 1 11 0 2.60 0 1 17 0 2.16 0 1 19 0 2.05 0 1 20 0 2.01 1 1 25 0 1.78 1 1 32 0 2.20 1 1 32 0 2.53 1 1 34 0 1.47 1 1 35 0 1.45 1 2 1 1 2.80 1 2 1 1 5.00 1 2 2 1 4.91 1 2 2 1 4.48 1 2 3 1 4.01 1 2 4 1 4.36 1 2 4 1 2.42 1 2 5 1 3.49 1 2 5 1 3.97 0 2 8 1 3.52 0 2 8 1 3.05 0 2 8 1 2.32 0 2 8 1 3.26 1 2 11 1 3.49 0 2 11 1 2.12 0 2 12 1 1.50 0 2 12 1 3.06 0 2 15 1 2.30 0 2 17 1 2.95 0 2 22 1 2.73 0 2 23 1 1.97 1 ; DATA inrisk1; wbc=2.93; PROC PHREG DATA=remission NOPRINT; MODEL weeks*status(0)=wbc; WHERE trt=0; BASELINE COVARIATES=inrisk1 OUT=out10 LOGLOGS=lls/NOMEAN; PROC PHREG DATA=remission NOPRINT; MODEL weeks*status(0)=wbc; WHERE trt=1; BASELINE COVARIATES=inrisk1 OUT=out11 LOGLOGS=lls/NOMEAN; DATA out1; SET out10 (IN=in0) out11 (IN=in1); IF in0 THEN trt=0; ELSE IF in1 THEN trt=1; lls=-lls; PROC PRINT; ----------------------------------------------------------------------------- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.119.137.219
selient:噢 畫出LLS的指令忘記打,不過重點不是那個請見諒 04/13 19:34
kenshin528:BY ? 04/13 19:50
selient:用過 by 不行耶 print不出來東西 04/13 20:49
wlsherica:STRATA可嗎???? 04/13 21:11
bmka:I think what you want is fitting Kaplan-Meier curves for 04/13 23:19
bmka:different treatment groups. 04/13 23:20
selient:not KM , I want PH 04/13 23:58
bmka:It's not very meaningful because you already impose a 04/14 00:45
bmka:proportional hazards assumption. 04/14 00:45
selient:under that assumption I draw two curve to check if 04/14 01:05
selient:it fit the assumption. 04/14 01:06
bmka:Then what you want is KM curves. 04/14 01:33
bmka:or other model diagnosis plots. Keep in mind that you 04/14 01:35
bmka:are dealing with censored data. 04/14 01:35
sneak: proportiona https://noxiv.com 01/02 15:05