看板 TTSH11311 關於我們 聯絡資訊
※ 引述《alan0824 (無敵小黑猴)》之銘言: 第一題:Suppose that f(x+y)=f(x)f(y) for all x and y. Show that if f'(0) exist than f'(a) exist and f'(a)=f(a)f'(0) 第二題:Find the equation of the tangent line to y=tanx at x=0 y'=(tanx)'=(secx)^2 將0帶入.... y'=(sec0)^2=1 第三題:y=(2x-3)/(x^2+4)^2 find Dxy Dx(y)=Dx[(2x-3)(x^2+4)^(-2)] =2(x^2+4)^(-2)+(-2)(2x-3)(2x)(x^2+4)^(-3) =(-6x^2-12x+8)(x^2+4)^(-3) 第四題:G'(1) if G(t)=(t^2+9)^3*(t^2-2)^4 G'(t)=3(2t)(t^2+9)^2*(t^2-2)^4+4(2t)(t^2-2)^3*(t^2+9)^3 =2t(t^2+9)^2*(t^2-2)^3*(7t+30) 第五題:G'(1/2) if G(s)=cos拍s*sin^2拍s G'(s)=[cosπs*(sinπs)^2]' =-π(sinπs)(sinπs)^2+2π(sinπs)(cosπs)(cosπs) G'(1/2)=-π[sin(π/2)]^3+2π[sin(π/2)][cos(π/2)]^2 =-π(√2/4)+2π(√2/4) =(√2/4)π 第六題:Find d^3y/dx^3 (好像是微分三次的意思) y=sin(7x) y'=7cos(7x)--------dy/dx y"=-49sin(7x)------d^2y/(dx)^2 y"'=-343cos(7x)-----d^3y/(dx)^3 先降子好了...有的話我在問 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.166.142.74 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.137.109.53