看板 W-Philosophy 關於我們 聯絡資訊
※ 引述《realove (realove)》之銘言: : Wittgestein有談到following the rule 這在講什麼東西呀? : 據我粗淺地了解 : 有人的詮釋是說 有一個序列1 3 5 7 9 11 13 15 ? : 我們怎麼會知道下一個數是17呢? : 是因為我們運用了"後一個數等於前一個數加2的規則" : 還是因為我們有一種洞察的能力 即便不運用以上規則 也會認為下一個數是17? 先老實說,我知道維根斯坦,但是不知道following a rule 我是看到你講之後才跑去書局抽一本書硬啃 所以要先感謝你有看書,讓我這個什麼都不知半懂的笨蛋多知道一件事 那本書我只「啃」了一頁,因為有點受不了Witt像是寫數學公式般的「哲學寫法」 我看到那本書上寫Witt在教學生, 叫學生寫下一個2n的數列 Witt先示範,寫下1 3 5 7 ...(規則是2n) 學生跟著寫,寫下1 3 5 7 9 ....(規則是2n)....學生寫到快1000,Witt說可以停了 之後Witt叫學生再寫,這次要用+2,從1000以後的數開始接下去 結果學生寫出1000 1004 1008 ..... 換作是其他的老師,那個學生可能會被呼巴掌吧 可是Witt很驚訝的發現,怎麼沒想到數學答案可以這樣寫 我數學成績爛,可是我也覺得Witt學生太不像話 怎麼從1000開始就變成1004、1008? 喔,原來學生以為,這次也要用(規則是2n) 就像之前寫到1000那次一樣 看不懂? 吼,那個學生是說,這次也要2乘以+2啦!(規則是2n,n= +2) Witt發現,自己忘記告訴學生,這次只要+2就好 不用把n當成2,也就是這次不用2n當規則 可是Witt沒說,學生怎麼會知道呢? Witt開始懷疑我們在當學生,「被教」數學的時候 是怎麼following a rule,怎麼意識following a rule這個概念 我書只看到這頁,其他的,其他人來說明啦XD : 有人認為Witt的意思是當我們知道下一個數是17的時候 : 我們運用的乃是一種洞察的能力 而反對我們乃是運用一個客觀的規則 : 這種詮釋對嗎? 為什麼不是運用客觀的規則呢? 運用客觀規則的這種講法會有什麼毛病? : 我現在想到的是..要知道以上序列下一個數是17 : 不見得要用"後一個數等於前一個數加2的規則"也可以用其它規則如 : "2乘以間隔數減一就等於最後的間隔前的那一個數" : 如1與3中間有一個間隔 2乘以1減1就等於1 : 然後1 3 5中間有兩個間隔數 2乘以2減1就等於3 : 然後1 3 5 7中間有三個間隔數 2乘以3減1就等於5 : 以此類推 從1到?的下一個數中間共有9個間隔 所以根據以上規則2乘以9減1就等於17 : 問號就等於17 : 如果我這想法沒錯的話 充其量Witt好像只是在說我們知道?=17的時候 : 有許多規則都可以適用...但這不代表我們完全不用規則 依憑的只是我們的洞察能力 : anyway...有誰對這個問題很瞭解的 幫忙解惑一下吧..謝謝 : (或是推薦幾筆有用的參考資料 可以是書的一兩章 但 : 不要是整本書 降子短時間是看不完滴!>_<) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.65.113.111