看板 ck47th320 關於我們 聯絡資訊
※ 引述《changkh (月光華華)》之銘言: : 最近我朋友碰上了一題數學題不知道怎麼解,不知道有沒有人學過呢? : In the zipper model for the helix-coil transition, the partition : function Q is give by: : N : Q= 1 + sigma * sum (N - i + 1) s^i : i=1 : sum is summation. : Where N is the number of residues in the chain. : a) using the fact that : N : sum s^i = (s^(N+1) - S) / s - 1 : i=1 : show that the partition function in zipper model can be : evaluated to give: : Q= 1 + (sigma * s) * (s^(N+1) - (N+1)s + N) / (s - 1)^2 : b) show that the average fraction of helical residue, theta, : can be obtained from : theta = 1 / N * (ln Q對ln s的偏微分) : 謝謝啦。 (a) N Q = 1 + sigma * sum (N - i + 1) s^i i=1 N j = 1 + sigma * sum sum s^i j=1 i=1 N s^(j+1) - s = 1 + sigma * sum ------------- j=1 s - 1 sigma N = 1 + ------- sum [ s^(j+1) - s ] s - 1 j=1 sigma s^(N+1) - s = 1 + ------- [ s * ------------- - Ns ] s - 1 s - 1 sigma * s = 1 + ------------- [ s^(N+1) - s - N ( s - 1 ) ] ( s - 1 )^2 sigma * s = 1 + ------------- [ s^(N+1) - (N+1)*s + N ] ( s - 1 )^2 (b) 不知道定義....:P -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.66.85