看板 ck47th320 關於我們 聯絡資訊
※ 引述《changkh (留學生涯)》之銘言: : ※ 引述《cabin (牧野流星)》之銘言: : : 嗯...題目我解釋一下, 你看對不對 : : 假設有一個社區要挖井。為了讓每一口井平均分配,有以下的規則: : : 如果只有一口井的話 : : 這口井要在(0, 1)之間。 : : 如果再加一口變成二口井的話 : : 這二口井中的第一口要在(0, 1/2)之間,第二口要在(1/2, 1)之間。 : : 如果二口井再加一口變成三口井的話 : : 這三口井中的第一口要在(0, 1/3)之間,第二口要在(1/3, 2/3)之間, : : 第三口要在(2/3, 1)之間。 : : 如果總共有 i 口井的話 : : 這 i 口井要在(0, 1/i), (1/i, 2/i), ... ((i-1)/i, 1) 之間。 : : 而每一次挖井時舊的井的位置是不能改變的。 : : 我想題目應該是上面這樣才對 : 沒錯,就是這樣子。 : 所以覺得蠻難想的。 Sorry, I can't type Chinese right now. I hope the solution below is correct. It's just for your information. Assume there are n wells. The position d(k) of the k-th well has to satisfy all of the following conditions: (k-1)/k < d(k) < k/k which is the valid interval if there are k wells (k-1)/(k+1) < d(k) < k/(k+1) which is the valid interval if k+1 wells ... (k-1)/n < d(k) < k/n which is the valid interval if there are n wells Note that for all wells (i.e. k=1,2,3,...,n), the above inequalities must hold. Because (a) the left-hand part of the above inequalities are decreasing , i.e. (k-1)/k < (k-1)/(k+1) < ... < (k-1)/n, and (b) the right-hand part are also decreasing , i.e. k/k < k/(k+1) < ... < k/n, , we know the above conditions are all satisfied if and only if (k-1)/k < k/n for all k in {1,2,...,n}. It is straightforward that (k-1)/k < k/n is equivalent to n < (k^2)/(k-1), for all k in {1,2,...,n}. Note that (k^2)/(k-1) is increasing when k>2. You can verify it by looking at its derivative. So we only need to check k=1 (n<inf) and k=2 (n<4). Therefore, the number of wells is at most 3 (n<4). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 128.2.133.23