作者JGU (Karnaugh Map)
看板ck55th325
標題Re: [問題] 徵求數學高手~~
時間Sat Oct 25 15:06:07 2003
Another solution(provided by LimSinE)
We want to prove for any ε > 0 there exists δ > 0 such that
if 0 < |x-a| < δ then |f(x)-0| = f(x) < ε [ note that f(x)≧0 for all x]
For a given ε, first let
δ1 = 1/(2N^2) where N is a positive integer
such that N > 1/ε That is, 1/N < ε
If for every x satisfied 0 < |x-a| <
δ1 => f(x) ≦ 1/N < ε
Then we can simply let δ =
δ1 and finish our work.
Otherwise, there exists a rational number
x1
such that 0 < |
x1 - a| <
δ1 and f(
x1) > 1/N. Then let
δ2 = |
x1 - a|
If for every x satisfied 0 < |x-a| <
δ2 => f(x) ≦ 1/N < ε
Then we can simply let δ =
δ2 and finish our work.
Otherwise, there exists a rational number
x2 such that
0 < |
x2 - a| <
δ2 = |
x1 - a| and f(
x2) > 1/N
Now we have 0 < |
x2 - a| < |
x1 - a| <
δ1 = 1/(2N^2)
and f(
x1) > 1/N , f(
x2) > 1/N
However, this case is impossible. ..........(*)
Since we examined all the possibilities, we have proved this theorem #
(*) Assume that
x1 = p1/q1 ,
x2 = p2/q2
p1,p2 are integers and q1,q2 are positive integers s.t. (p1,q1)=(p2,q2)=1
0 < |
x2 - a| < |
x1 - a| < 1/(2N^2)
=> |
x1 -
x2| ≦ |
x2 - a| + |
x1 - a| < 1/N^2 ,
x1 ≠
x2
=> |
x1 -
x2| = |(p1/q1)-(p2/q2)| = | p1q2 - p2q1 | / q1q2 ≧ 1/q1q2
=> 1/q1q2 ≦ |
x1 -
x2| < 1/N^2 =>
N^2 < q1q2
f(
x1) > 1/N , f(
x2) > 1/N
=> 0 < q1 < N, 0 < q2 < N ( because of the definition of f(x) )
=>
q1q2 < N^2 lead to a
contradiction #
※ 引述《JGU (逗左有囉西咕)》之銘言:
※ 引述《wanderer (哇拉拉~)》之銘言:
: 1/q ,當x=p/q屬於有理數 (p,q)=1 ,q>0
: f(x)=
: 0 ,當x屬於無理數,不屬於有理數時
: 試證明:
: 在a屬於有理數時, f(x)在x=a不連續
: 在a不屬於有理數時, f(x)在x=a連續
只要證明 lim f(x) = 0 對於所有的 a 就好了
x→a
給定 ε > 0 , 則存在正整數 n 使得 n > 1/ε ....(*)
令 S = { |(r/m) - a| |m為不大於n的正整數,r為整數,且 a-1 ≦ r/m ≦ a+1 }
設 S 中非 0 的最小元素為δ, 則 δ > 0 ....(**)
若 0 < |x-a| < δ => |x-a| 不屬於 S => |f(x)-0| = f(x) < 1/n < ε #
(*) 這裡用到阿基米得定理,不過應該沒關係
(**) 這裡可能要說明 S 是非空有限集而且不是 {0}
最後一步 f(x) < 1/n 是因為 x 不屬於 {r/m | m為不大於n的正整數,r為整數}
所以若 x = p/q 是有理數,則 q > n => f(x) = 1/q < 1/n
若 x 是無理數,則 f(x) = 0 < 1/n
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.7.59
→ chericherub:謝謝你們~等我看懂,我就要跟教授ㄠ滿分XD 推218.174.152.152 10/24
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.230.30.231
→ LimSinE:要說一下x1、x2是有理數因為f(x1)f(x2)>0 推 61.70.211.116 10/25
→ JGU:對耶我都忘了....這篇實在是打太久了^^" 推 61.230.26.29 10/25
※ 編輯: JGU 來自: 61.230.26.29 (10/25 22:34)
→ chericherub:我看到推文才發現...原來是我問的問題^^"" 推218.174.163.159 10/28