看板 ck55th325 關於我們 聯絡資訊
※ 引述《pipibjc (  )》之銘言: : x^2=8y 上有兩點p(x1,y1),q(x2,y2) : pq 線段長 12 且連線通過焦點 : 問 y1 + y2 = ? 線段長^2 = (x1-x2)^2 + (y1-y2)^2      = (x1+x2)^2 + (y1+y2)^2 - 4x1x2 - 4y1y2 焦點為 (0,2) 假設斜率為 m => y-2 = mx 跟 x^2 = 8y 聯立 => x^2 - 8(mx+2) = 0 --> x^2 - 8mx - 16 = 0 (x1+x2) = 8m & x1x2 = -16 代入 y = mx + 2 (y1+y2) = m(x1+x2) + 4 = 8m^2 + 4 y1y2 = (mx1+2)(mx2+2) = m^2(x1x2) + 2m(x1+x2) + 4 = -16m^2 + 16m^2 + 4 = 4 線段長^2 = 144 = (8m)^2 + (8m^2+4)^2 - 4*(-16) - 4*(4) = 64m^2 + 64m^4 + 64m^2 + 16 + 64 - 16 = 64m^4 + 128m^2 + 64 --> 9 = 4m^4 + 8m^2 + 4 --> 4m^4 + 8m^2 - 5 = 0 (2m^2 + 5)(2m^2 - 1) = 0 取 2m^2 = 1 y1+y2 = 8m^2 + 4 = 4 + 4 = 8 大概就這樣了, 有錯請指正一下 :p -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.216.139.85
wanderer:辛苦你了~ 61.216.74.162 09/19
akitohayama:我沒有好的sense啊,只有暴力。 61.216.139.85 09/19