作者akitohayama (細雨紛飛)
看板ck55th325
標題Re: [問題] 數學
時間Sun Sep 19 00:13:11 2004
※ 引述《pipibjc ( )》之銘言:
: x^2=8y 上有兩點p(x1,y1),q(x2,y2)
: pq 線段長 12 且連線通過焦點
: 問 y1 + y2 = ?
線段長^2 = (x1-x2)^2 + (y1-y2)^2
= (x1+x2)^2 + (y1+y2)^2 - 4x1x2 - 4y1y2
焦點為 (0,2) 假設斜率為 m => y-2 = mx
跟 x^2 = 8y 聯立 =>
x^2 - 8(mx+2) = 0 --> x^2 - 8mx - 16 = 0
(x1+x2) = 8m & x1x2 = -16
代入 y = mx + 2
(y1+y2) = m(x1+x2) + 4 = 8m^2 + 4
y1y2 = (mx1+2)(mx2+2) = m^2(x1x2) + 2m(x1+x2) + 4
= -16m^2 + 16m^2 + 4 = 4
線段長^2 = 144 = (8m)^2 + (8m^2+4)^2 - 4*(-16) - 4*(4)
= 64m^2 + 64m^4 + 64m^2 + 16 + 64 - 16
= 64m^4 + 128m^2 + 64
--> 9 = 4m^4 + 8m^2 + 4 --> 4m^4 + 8m^2 - 5 = 0
(2m^2 + 5)(2m^2 - 1) = 0
取 2m^2 = 1
y1+y2 = 8m^2 + 4 = 4 + 4 = 8
大概就這樣了, 有錯請指正一下 :p
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.216.139.85
推 wanderer:辛苦你了~ 61.216.74.162 09/19
→ akitohayama:我沒有好的sense啊,只有暴力。 61.216.139.85 09/19