作者meowth (喵貓)
看板puzzle
標題Re: [推理] 富翁的遺產
時間Sat Oct 23 15:52:03 2010
※ 引述《weselyong (Wesely翁)》之銘言:
: 今天早上聽同學講的
: 我不知道有沒有OP耶...
: 請再告訴我~
: ****************分隔線*******************
: 有一個非常富有的老翁臨死前把他的全部財產分成兩張支票
: 要給他兩個兒子,其中一張的面額是另一張的兩倍。
: 但是支票分別放在信封裡面。
: 老富翁說:
: 「你們看過之後可以決定要不要交換,前提是對方還不知道你這張的數字是多少的時候」
:
: 老大看到他拿到一千萬之後OS:
: 他那包比我大的機率是0.5,可能有兩千萬
: 比我小的機率是0.5,可能有五百萬
: 那我跟他換之後的期望值應該是1250萬! 比我的1000萬多!當然換!
: 弟弟看到他拿到500萬之後也 OS一發:
: 哥哥可能拿到1000萬,機率是0.5
: 也可能只有250萬,機率是0.5
: 那我跟他換的期望值是 500 + 125 = 625萬!比我的500萬多!當然換!
: 很明顯的其中必有詐
: 他們錯了嗎?
: (我不知道答案喔XDD 或者說我不確定我答案是對的)
這題維基百科裡有...
http://en.wikipedia.org/wiki/Two_envelopes_problem
1. I denote by A the amount in my selected envelope.
2. The probability that A is the smaller amount is 1/2, and that it is the
larger amount is also 1/2.
3. The other envelope may contain either 2A or A/2.
4. If A is the smaller amount the other envelope contains 2A.
5. If A is the larger amount the other envelope contains A/2.
6. Thus the other envelope contains 2A with probability 1/2 and A/2 with
probability 1/2.
7. So the expected value of the money in the other envelope is
{1 \over 2} 2A + {1 \over 2} {A \over 2} = {5 \over 4}A
8. This is greater than A, so I gain on average by switching.
9. After the switch, I can denote that content by B and reason in exactly
the same manner as above.
10. I will conclude that the most rational thing to do is to swap back
again.
11. To be rational, I will thus end up swapping envelopes indefinitely.
12. As it seems more rational to open just any envelope than to swap
indefinitely, we have a contradiction.
關鍵大致是兩個式子的"A"是不同情形下無法運算, 或是
Devlin writes:
To summarize: the paradox arises because you use the prior probabilities
to calculate the expected gain rather than the posterior probabilities. As we
have seen, it is not possible to choose a prior distribution which results in
a posterior distribution for which the original argument holds; there simply
are no circumstances in which it would be valid to always use probabilities
of 0.5.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.228.24.179
推 puzzlez:好多英文@@ 10/23 17:08
推 LPH66:簡單說就是那個1/2機會是事前機率 10/23 17:45
→ LPH66:不能拿來估計事後(交換後)的值 10/23 17:45
推 weselyong:哇!謝謝你,原來是經典哪 10/23 18:21
→ puzzlez:雖然不是很懂 但謝謝L大的解釋 :-) 10/23 19:08
推 rik:那可以請問這事後機率應該是多少?怎麼求出來的呢? 10/23 21:12
推 rehearttw:這不叫事後機率,貝氏定理是事後機率。L兄說的是事後值 10/23 22:57
推 isnoneval:求不出來, 你要知道富翁遺產總值的機率分布 10/24 01:55
→ isnoneval:只要兩兄弟對這件事有同樣的 prior 就不會有兩人都願意 10/24 01:56
→ isnoneval:換的情況 10/24 01:56
推 walkwall:這應該是賽局理論的東西吧 10/25 00:02
推 weselyong:可是感覺比較不賽局耶,因為對方也一定想換的 10/25 08:30