看板 trans_math 關於我們 聯絡資訊
Find the limit, if it exists l i m (x + e^x)^1/x x→oo 我算出來的答案是:e 可是解答算出來是:1 其中問題是出在要用羅畢達的時候 會做到 e^l i m 1 + e^x x→oo ─── x + e^x 做到這裡還可以繼續用羅畢達嗎? 因為解答就直接寫0了 可是我繼續微分會變成 l i m e^x x→oo ─── 1 + e^x 然後再除以 e^x 答案就會是1 @@ 所以到底可不可以繼續微呢? (就是 lim 1+e^x ) x→oo ── x+e^x 謝謝回答。 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.162.213.72
conanhide:我也覺得是exp 220.139.145.103 06/25
practicechy:對呀 我也覺得 ~~ 218.162.213.72 06/26