看板 trans_math 關於我們 聯絡資訊
※ 引述《terry1122 (我會一直守候著你)》之銘言: : 1. Find the area of region R bounded : f(x)= x^4-2x^3+2 the x-axis x=-1 x=-2 : ans:51/10 : 2. 設r = 1/(1+cosθ) (-π/2≦θ≦π/2) : 試求此曲線弧長 : ans: √2 + ln(√2+1) : 其實第一題是不知道怎麼因式分解= = 第二題: π/2 S=∫√((r^2)+(r')^2) dθ -π/2 r=1/(1+cosθ) r'=sinθ/(1+cosθ)^2 π/2 S=∫√(2/(1+cosθ)^3) dθ -π/2 令t=tan(θ/2) cosθ=(1-t^2)/(t^2+1) dθ=2/t^2+1 dt (經過一番計算...就是加加減減...) π/2 S=∫√(t^2+1) dt -π/2 2 2 |π/2 S=(1/2)tan(θ/2)√(tan(θ/2)+1)+(1/2)ln|tan(θ/2)+√(tan(θ/2)+1)| |-π/2 S=√2+ln(1+√2) 有錯請指正... 感謝... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 163.22.18.105 ※ 編輯: godlife 來自: 163.22.18.105 (04/06 21:51) ※ 編輯: godlife 來自: 163.22.18.105 (04/06 21:51)
Acrylates:推一個218.174.172.195 04/07
terry1122:謝謝~我解出來了:D 203.67.220.77 04/08