看板 trans_math 關於我們 聯絡資訊
※ 引述《Jasy (面對現實)》之銘言: : 1.Suppose that f is a conti function which satisfies the intergral equation : x f(t) : f(x)=2 + S ------------ dt, x>=0 then f(1)=? : 0 (t+2)(t+3) : -x^2(t^2+1) : x -t^2 2 1 e : 2.If f(x)={S e dt} , g(x)=S ------------- dt, then : 0 0 2 : t +1 -x^2(t^2+1) 1 e g(x) = S -------------------- dt 0 2 t + 1 1 x -y^2(t^2+1) = S S -2y e dy dt + pi/4 0 0 x 1 -y^2(t^2+1) = S S -2y e dt dy + pi/4 0 0 x 1 -(yt)^2 -y^2 = S S -2y e ( e ) dt dy + pi/4 0 0 x y -k^2 -y^2 = S S -2 e ( e ) dk dy + pi/4 0 0 x y -t^2 -y^2 = S S -2 e ( e ) dt dy + pi/4 0 0 x -t^2 -x^2 f'(x) = 2 S e dt ( e ) 0 x -t^2 -x^2 x -t^2 -x^2 g'(x) = S -2 e ( e ) dt = -2 S e dt ( e ) 0 0 = -f'(x) -> g'(x) + f'(x) = 0 -> g(x) + f(x) = c = g(0) + f(0) = pi/4 -> g(∞) + f(∞) = pi/4 since lim g(x) = 0 x->∞ -> f(∞) = pi/4 ∞ -t^2 -> S e dt = √π/2 0 : (1) Show that g'(x)+f'(x)=0 for all of x : (2) Use (1) to show that g(x)+f(x)=π/4 : ∞ -t^2 dt : (3) Use (2) to prove that S e = √π/2 : 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.167.179.21
Jasy:nice 218.187.11.143 05/08