作者beatitude (moth)
看板trans_math
標題Re: [多變] 求表面積
時間Wed Jun 1 13:07:13 2005
※ 引述《aeiin (aeiin)》之銘言:
: X^2+Y^2+Z^2-2AZ=0 with 0 <= X^2+Y^2 <= BZ .assume A > B > 0
: "<=" 指小於等於
: 有能力的大大幫忙解吧!!!
x^2 + y^2 = 2Az - z^2 <= Bz
-> z( z-(2A-B) ) >= 0 -> z <= 0 or z => 2A-B
因為 Bz => x^2 + y^2 => 0 -> z => 2A-B
又因為 x^2+y^2+(z-A)^2 = A^2 -> z <= 2A
-> 2A-B <= z <= 2A
x = x y = y z = g(x,y) = A + √{ A^2 - x^2 - y^2 }
▕i j k ▕ (gx,gy是偏微)
▕ ▕
▕1 0 gx(x,y)▕ = k - gx(x.y)i - gy(x,y)j
▕ ▕
▕0 1 gy(x.y)▕ = ai+bj+ck
面積 ∫∫√{a^2 + b^2 + c^2} dA
R
x^2 y^2
= ∫∫√{ -------------- + -------------- + 1 } dA
R (A^2-x^2-y^2) (A^2-x^2-y^2)
A^2
= ∫∫√{ -------------- } dA
R (A^2-x^2-y^2)
因為 x^2+y^2 = r^2 = 2Az - z^2
r^2 = 0 when z=2A
= B(2A-B) when z=2A-B
換成極座標
2π √{B(2A-B)} r
= ∫ ∫ A ------------ drdθ
0 0 √{A^2-r^2}
▕√{ B(2A-B) }
= -2πA √{A^2-r^2}▕
▕0
= 2πA { √A^2 - √{ A^2 - 2AB + B^2 } }
= 2πA( A - A + B ) = 2πAB
答案有點怪 不確定對不對
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.167.165.173
推 aeiin:好厲害!!答案是對的 140.116.102.40 06/01
推 aeiin:你的解法中,倒數第二行有錯吧! 140.116.102.40 06/02
推 beatitude:嗯..請指正218.167.165.173 06/02
推 aeiin:sorry!!我看錯了,不過z小於2a是因為...??? 140.116.102.40 06/03
推 beatitude:x^2+y^2+(z-A)^2=A^2 -> z <= 2A 第四行有..218.167.166.120 06/03