看板 trans_math 關於我們 聯絡資訊
※ 引述《aeiin (aeiin)》之銘言: : X^2+Y^2+Z^2-2AZ=0 with 0 <= X^2+Y^2 <= BZ .assume A > B > 0 : "<=" 指小於等於 : 有能力的大大幫忙解吧!!! x^2 + y^2 = 2Az - z^2 <= Bz -> z( z-(2A-B) ) >= 0 -> z <= 0 or z => 2A-B 因為 Bz => x^2 + y^2 => 0 -> z => 2A-B 又因為 x^2+y^2+(z-A)^2 = A^2 -> z <= 2A -> 2A-B <= z <= 2A x = x y = y z = g(x,y) = A + √{ A^2 - x^2 - y^2 } ▕i j k ▕ (gx,gy是偏微) ▕ ▕ ▕1 0 gx(x,y)▕ = k - gx(x.y)i - gy(x,y)j ▕ ▕ ▕0 1 gy(x.y)▕ = ai+bj+ck 面積 ∫∫√{a^2 + b^2 + c^2} dA R x^2 y^2 = ∫∫√{ -------------- + -------------- + 1 } dA R (A^2-x^2-y^2) (A^2-x^2-y^2) A^2 = ∫∫√{ -------------- } dA R (A^2-x^2-y^2) 因為 x^2+y^2 = r^2 = 2Az - z^2 r^2 = 0 when z=2A = B(2A-B) when z=2A-B 換成極座標 2π √{B(2A-B)} r = ∫ ∫ A ------------ drdθ 0 0 √{A^2-r^2} ▕√{ B(2A-B) } = -2πA √{A^2-r^2}▕ ▕0 = 2πA { √A^2 - √{ A^2 - 2AB + B^2 } } = 2πA( A - A + B ) = 2πAB 答案有點怪 不確定對不對 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.167.165.173
aeiin:好厲害!!答案是對的 140.116.102.40 06/01
aeiin:你的解法中,倒數第二行有錯吧! 140.116.102.40 06/02
beatitude:嗯..請指正218.167.165.173 06/02
aeiin:sorry!!我看錯了,不過z小於2a是因為...??? 140.116.102.40 06/03
beatitude:x^2+y^2+(z-A)^2=A^2 -> z <= 2A 第四行有..218.167.166.120 06/03