看板 trans_math 關於我們 聯絡資訊
※ 引述《STARS74721 (....)》之銘言: : 1. : oo :   S x2^-x dx : 0 分部積分 u dv x 2^-x 1 -1/ln2 * 2^-x 0 1/(ln2)^2 * 2^-x = x * -1/ln2 * 2^-x - 1/(ln2)^2 * 2^-x 上下限代入 x -1 1 =lim ------ * --- - 0 - 0 + ----- x->∞ 2^x ln2 (ln2)^2 -1 1 1 = ------ + ------ = ------- 2^x(ln2)^2 (ln2)^2 (ln2)^2 : 2. suppose that volume of air inhaled by person during respiration is given : by v(t)=6/5拍(1-sin拍t/2) for t大於等於0 liters at time t (in seconds) : when is the volume of inhaled air at a maximum? what is maximum volume? 這題看起來像是淡江的考古題? 先前幫人寫答案好像看到一模一樣的英文,不曉得v(t)有沒有一樣 這題只要知道when、maximum的意思就能寫了,其他單字不懂無所謂。 題目給了v(t),問何時v(t)會最大,以及v(t)最大是多少。 這樣一階微分應該就懂了吧。 時間方面別忘了三角是週期函數就好。 == 補句話,從sin的值在-1~1之間來看,v(t)應該可以直接判斷出來了, 連微分都不用的說。 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.139.146.236 ※ 編輯: Elfiend 來自: 220.139.146.236 (06/25 23:39)